Liu Wenxian, Feng Jinxiu, Wang Henan, Wang Pu, Zheng Dong, Shi Wenhui, Wu Fangfang, Deng Tianqi, Cao Xiehong
State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.
Angew Chem Int Ed Engl. 2025 Jul;64(27):e202506762. doi: 10.1002/anie.202506762. Epub 2025 May 8.
The direct four-electron oxygen reduction reaction (4e ORR) critically governs efficiency and lifespan in metal-air batteries and fuel cells, yet selectively suppressing competitive 2e and stepwise 2epathways that generate corrosive hydrogen peroxide remains a major challenge. Herein, we demonstrate the strategic incorporation of secondary coordinated sulfur atoms into transition metal-N-C electrocatalysts to effectively promote direct 4e ORR and simultaneously suppress undesirable 2e pathways. Density functional theory (DFT) calculations and operando spectroscopy reveal that enhanced adsorption of key intermediate *OOH facilitates efficient O─O bond cleavage, underpinning altered catalytic selectivity. Importantly, this approach is universally applicable to various carbon-based catalysts, including Co─N@C, Ni─N@C, Mn─N@C, and N@C. Specifically, a sulfur-mediated Co─N/Co@C catalyst, comprising Co─N sites and Co nanoparticles, dramatically lowers the 2e O-to-HO rate constant to merely 0.05-fold of its original value at 0.78 V. Consequently, Zn-air batteries using Co─N/Co@C-S as cathode exhibits an outstanding peak power density of 220 mW cm, remarkable lifespan over 2500 h, and outstanding rate performance from 5 to 50 mA cm. This work paves a generalizable route for designing highly active and selective electrocatalysts suitable for advanced long-life energy storage devices.
直接四电子氧还原反应(4e ORR)对金属空气电池和燃料电池的效率和寿命起着关键作用,然而,选择性抑制产生腐蚀性过氧化氢的竞争性双电子(2e)和逐步双电子(2ep)途径仍然是一个重大挑战。在此,我们展示了将二级配位硫原子策略性地引入过渡金属-N-C电催化剂中,以有效促进直接4e ORR,同时抑制不良的2e途径。密度泛函理论(DFT)计算和原位光谱表明,关键中间体*OOH的吸附增强促进了有效的O─O键断裂,这是催化选择性改变的基础。重要的是,这种方法普遍适用于各种碳基催化剂,包括Co─N@C、Ni─N@C、Mn─N@C和N@C。具体而言,一种由Co─N位点和Co纳米颗粒组成的硫介导Co─N/Co@C催化剂,在0.78 V时将双电子氧到过氧化氢的速率常数大幅降低至仅为其原始值的0.05倍。因此,使用Co─N/Co@C-S作为阴极的锌空气电池表现出220 mW cm的出色峰值功率密度、超过2500小时的显著寿命以及5至50 mA cm的出色倍率性能。这项工作为设计适用于先进长寿命储能装置的高活性和选择性电催化剂铺平了一条通用途径。