Volkov Victor V, Perry Carole C, Chelli Riccardo
Independent Researcher, Bereozovaya 2a, Konstantinovo 140207, Moscow Region, Russia.
Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
Molecules. 2025 Mar 26;30(7):1469. doi: 10.3390/molecules30071469.
We explore the structural and electronic properties of representative insulin-mimetic oxovanadium and zinc complexes as computed in vacuum, in water clusters and upon binding to PTEN and PTP1B phosphatases. Albeit diverse, the enzymes' active sites represent evolutionary variant choices of the same type of biochemistry. Though different in respect to covalency and the orbital nature of bonding, theory predicts comparable ionic radii, bond lengths and square pyramidal coordination for the considered vanadyl and zinc systems when in an aqueous environment. Employing docking, DFT and quantum mechanics/molecular mechanics methods, we address possible polar interactions in the protein environments and compute infrared/Raman modes and optical electronic properties, which may be suitable for the structural analysis of the specific chemical moieties in binding studies. Accounting for how protein embedding may alter the electronic states of metal centres, we discuss artificial intelligence-assisted protein field engineering to assist biomedical and quantum information applications.
我们研究了代表性的胰岛素模拟氧钒和锌配合物在真空、水簇中以及与PTEN和PTP1B磷酸酶结合时的结构和电子性质。尽管这些酶的活性位点各不相同,但它们代表了同一类生物化学的进化变体选择。尽管在共价性和键的轨道性质方面有所不同,但理论预测,在水环境中,所考虑的氧钒和锌体系具有可比的离子半径、键长和四方锥配位。我们采用对接、密度泛函理论(DFT)和量子力学/分子力学方法,研究蛋白质环境中可能存在的极性相互作用,并计算红外/拉曼模式和光学电子性质,这些性质可能适用于结合研究中特定化学基团的结构分析。考虑到蛋白质嵌入如何改变金属中心的电子态,我们讨论了人工智能辅助的蛋白质场工程,以辅助生物医学和量子信息应用。