Suppr超能文献

全球营养不良领导倡议标准对恶性肿瘤患者的诊断价值:一项系统评价和荟萃分析

Diagnostic Value of a Global Leadership Initiative on Malnutrition Criteria in Patients with Malignant Tumors: A Systematic Review and Meta-Analysis.

作者信息

Zhang Zecheng, Zhu Jun, Qiao Yihuan, Jiang Xunliang, Jin Weidong, Li Jipeng

机构信息

Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, China.

Department of Experimental Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.

出版信息

Nutr Rev. 2025 Apr 26. doi: 10.1093/nutrit/nuaf043.

Abstract

CONTEXT

Malnutrition is a common complication of malignant tumors, and accurate diagnosis and treatment are essential. Although the Global Leadership Initiative on Malnutrition (GLIM) criteria are widely accepted for the diagnosis of malnutrition in a variety of diseases, their diagnostic value in patients with malignant tumors is controversial.

OBJECTIVE

We conducted a comprehensive analysis of studies of the GLIM criteria in patients with malignant tumors and performed a standardized meta-analysis to evaluate the diagnostic value of the GLIM criteria in this patient population.

DATA SOURCES

We conducted a systematic search across the PubMed, Cochrane, Web of Science, and ClinicalTrials.gov databases to identify studies utilizing the GLIM criteria for diagnosing malnutrition in cancer patients during the period from the initial adoption of the criteria in 2020 through February 29, 2024.

DATA EXTRACTION

The meta-analysis was conducted in accordance with the PRISMA2020 statement. Using the Patient-Generated Subjective Global Assessment (PG-SGA) as a reference standard, we calculated the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) with 95% CI separately for the GLIM criteria. To assess the accuracy of the GLIM criteria, forest plots were drawn to summarize and present the data. The risk of bias and the methodological quality of the primary research were assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool.

DATA ANALYSIS

Fifty studies were identified following the initial search of the PubMed, Web of Science, Cochrane Library, and ClinicalTrials.gov databases. Fourteen studies including a total of 14 196 cancer patients met the selection criteria and were included in the meta-analysis. With the use of the PG-SGA as a reference standard, 7640 patients with malignant tumors were diagnosed with malnutrition (prevalence of 53.8%). The GLIM criteria had an overall sensitivity of 0.69 (95% CI: 0.62-0.75), specificity of 0.84 (95% CI: 0.75-0.91), PLR of 4.42 (95% CI: 2.71-7.2), NLR of 0.37 (95% CI: 0.30-0.45), DOR of 12.90 (95% CI: 6.68-21.21), and an AUC of 0.80 (95% CI: 0.77-0.84) compared to PG-SGA.

CONCLUSIONS

Compared with the PG-SGA, the GLIM criteria showed good diagnostic value in patients with cancer. The GLIM criteria can be considered acceptable in clinical practice and have the potential for wider application in the future.

SYSTEMATIC REVIEW REGISTRATION

PROSPERO registration No. CRD4202452675.1.

摘要

背景

营养不良是恶性肿瘤常见的并发症,准确诊断和治疗至关重要。尽管全球营养不良领导倡议(GLIM)标准在多种疾病的营养不良诊断中被广泛接受,但其在恶性肿瘤患者中的诊断价值仍存在争议。

目的

我们对恶性肿瘤患者中GLIM标准的研究进行了全面分析,并进行了标准化的荟萃分析,以评估GLIM标准在该患者群体中的诊断价值。

数据来源

我们在PubMed、Cochrane、Web of Science和ClinicalTrials.gov数据库中进行了系统检索,以识别2020年该标准首次采用至2024年2月29日期间利用GLIM标准诊断癌症患者营养不良的研究。

数据提取

荟萃分析按照PRISMA2020声明进行。以患者主观全面评定法(PG-SGA)作为参考标准,我们分别计算了GLIM标准的敏感度、特异度、阳性似然比(PLR)、阴性似然比(NLR)、诊断比值比(DOR)和曲线下面积(AUC)及其95%置信区间。为评估GLIM标准的准确性,绘制森林图来汇总和呈现数据。使用诊断准确性研究质量评估2工具评估原始研究的偏倚风险和方法学质量。

数据分析

在对PubMed、Web of Science、Cochrane图书馆和ClinicalTrials.gov数据库进行初步检索后,共识别出50项研究。14项研究共纳入14196例癌症患者,符合纳入标准并被纳入荟萃分析。以PG-SGA作为参考标准,7640例恶性肿瘤患者被诊断为营养不良(患病率为53.8%)。与PG-SGA相比,GLIM标准的总体敏感度为0.69(95%置信区间:0.620.75),特异度为0.84(95%置信区间:0.750.91),PLR为4.42(95%置信区间:2.717.2),NLR为0.37(95%置信区间:0.300.45),DOR为12.90(95%置信区间:6.6821.21),AUC为0.80(95%置信区间:0.770.84)。

结论

与PG-SGA相比,GLIM标准在癌症患者中显示出良好的诊断价值。GLIM标准在临床实践中可被认为是可接受的,并且在未来有更广泛应用的潜力。

系统评价注册

PROSPERO注册号CRD4202452675.1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验