Chen Nan, Luan Yong
The First Affiliated Hospital of Dalian Medical University, A222 Zhongshan Road, Dalian, Liaoning Province, China.
The First Affiliated Hospital of Dalian Medical University, A222 Zhongshan Road, Dalian, Liaoning Province, China.
J Affect Disord. 2025 Aug 1;382:478-487. doi: 10.1016/j.jad.2025.04.140. Epub 2025 Apr 24.
Major depressive disorder (MDD) is a prevalent and debilitating mental health condition characterized by persistent feelings of sadness and loss of interest. Despite its high prevalence, the underlying molecular mechanisms remain poorly understood. This study aims to elucidate the gene expression differences across distinct brain regions in MDD patients, identify potential diagnostic and therapeutic targets, and establish predictive models using bioinformatics approaches. Whole-transcriptome sequencing data from three different human brain regions were obtained from five datasets (GSE54564, GSE54571, GSE54572, GSE54567, GSE54568) in the GEO database. Gene symbol preprocessing was conducted using the XIANTAO platform. Differentially expressed genes (DEGs) were identified between MDD samples and controls using the R package "limma." Protein-protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape. Core genes were identified via CytoHubba using three algorithms (MCC, DEGREE, EPC). Receiver operating characteristic (ROC) curve analysis was performed to evaluate the prognostic value of core genes. LASSO regression was employed to enhance prediction accuracy and interpretability of machine learning models. Potential therapeutic drugs were predicted using the Comparative Toxicogenomics Database (CTD). In total, 342 DEGs related to the amygdala, 76 DEGs related to the anterior cingulate cortex, and 64 DEGs related to the dorsolateral prefrontal cortex were identified (p < 0.05, |logFC| > 0.15). Key diagnostic genes included COX5A and SST for the amygdala; CTSG, IL18RAP, LMO2, and MS4A7 for the anterior cingulate cortex; and VGF for the dorsolateral prefrontal cortex. The machine learning models demonstrated high predictive accuracy with AUC values of 0.776 for the amygdala, 0.928 for the anterior cingulate cortex, and 0.867 for the dorsolateral prefrontal cortex. Potential therapeutic drugs included dorsomorphin and trichostatin A. Gene set enrichment analysis (GSEA) revealed significant pathways such as oxidative phosphorylation in the amygdala, TYROBP microglial network in the anterior cingulate cortex, and MAPK signaling pathway in the dorsolateral prefrontal cortex. This study provides a comprehensive bioinformatics analysis of gene expression differences across brain regions in MDD patients. The identified core genes and pathways offer valuable insights into disease mechanisms and potential therapeutic targets, paving the way for future clinical applications.
重度抑郁症(MDD)是一种常见且使人衰弱的心理健康状况,其特征为持续的悲伤情绪和兴趣丧失。尽管其患病率很高,但其潜在的分子机制仍知之甚少。本研究旨在阐明MDD患者不同脑区的基因表达差异,识别潜在的诊断和治疗靶点,并使用生物信息学方法建立预测模型。从基因表达综合数据库(GEO)中的五个数据集(GSE54564、GSE54571、GSE54572、GSE54567、GSE54568)获取了来自三个不同人类脑区的全转录组测序数据。使用仙桃平台进行基因符号预处理。使用R包“limma”在MDD样本和对照之间识别差异表达基因(DEG)。使用STRING构建蛋白质-蛋白质相互作用(PPI)网络,并在Cytoscape中进行可视化。通过CytoHubba使用三种算法(MCC、度、EPC)识别核心基因。进行受试者工作特征(ROC)曲线分析以评估核心基因的预后价值。采用套索回归来提高机器学习模型的预测准确性和可解释性。使用比较毒理基因组学数据库(CTD)预测潜在的治疗药物。总共识别出342个与杏仁核相关的DEG、76个与前扣带回皮质相关的DEG和64个与背外侧前额叶皮质相关的DEG(p < 0.05,|logFC| > 0.15)。关键诊断基因包括杏仁核的COX5A和SST;前扣带回皮质的CTSG、IL18RAP、LMO2和MS4A7;以及背外侧前额叶皮质的VGF。机器学习模型显示出较高的预测准确性,杏仁核的AUC值为0.776,前扣带回皮质的AUC值为0.928,背外侧前额叶皮质的AUC值为0.867。潜在的治疗药物包括 dorsomorphin 和曲古抑菌素A。基因集富集分析(GSEA)揭示了显著的通路,如杏仁核中的氧化磷酸化、前扣带回皮质中的TYROBP小胶质细胞网络以及背外侧前额叶皮质中的MAPK信号通路。本研究提供了对MDD患者不同脑区基因表达差异的全面生物信息学分析。所识别的核心基因和通路为疾病机制和潜在治疗靶点提供了有价值的见解,为未来的临床应用铺平了道路。