Cao Peiyu, Li Runda, Li Yuting, Dong Yingbo, Tang Yilin, Xu Guoxin, Si Qi, Chen Congxin, Chen Lijun, Liu Wen, Yao Ye, Sui Yuxiu, Zhang Jiulou
Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, China.
Duke University, 2080 Duke University Road, Durham, NC 27708, United States.
J Affect Disord. 2025 Aug 15;383:20-31. doi: 10.1016/j.jad.2025.04.135. Epub 2025 Apr 24.
Cortical morphological abnormalities in schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD) have been identified in past research. However, their potential as objective biomarkers to differentiate these disorders remains uncertain. Machine learning models may offer a novel diagnostic tool.
Structural MRI (sMRI) of 220 SCZ, 220 MDD, 220 BD, and 220 healthy controls were obtained using a 3T scanner. Volume, thickness, surface area, and mean curvature of 68 cerebral cortices were extracted using FreeSurfer. 272 features underwent 3 feature selection techniques to isolate important variables for model construction. These features were incorporated into 3 classifiers for classification. After model evaluation and hyperparameter tuning, the best-performing model was identified, along with the most significant brain measures.
The univariate feature selection-Naive Bayes model achieved the best performance, with an accuracy of 0.66, macro-average AUC of 0.86, and sensitivities and specificities ranging from 0.58-0.86 to 0.81-0.93, respectively. Key features included thickness of right isthmus-cingulate cortex, area of left inferior temporal gyrus, thickness of right superior temporal gyrus, mean curvature of right pars orbitalis, thickness of left transverse temporal cortex, volume of left caudal anterior-cingulate cortex, area of right banks superior temporal sulcus, and thickness of right temporal pole.
The machine learning model based on sMRI data shows promise for aiding in the differential diagnosis of SCZ, MDD, and BD. Cortical features from the cingulate and temporal lobes may highlight distinct biological mechanisms underlying each disorder.
过去的研究已发现精神分裂症(SCZ)、重度抑郁症(MDD)和双相情感障碍(BD)存在皮质形态异常。然而,它们作为区分这些疾病的客观生物标志物的潜力仍不确定。机器学习模型可能提供一种新型诊断工具。
使用3T扫描仪获取了220名精神分裂症患者、220名重度抑郁症患者、220名双相情感障碍患者和220名健康对照者的结构磁共振成像(sMRI)。使用FreeSurfer提取68个脑皮质的体积、厚度、表面积和平均曲率。272个特征经过3种特征选择技术以分离出用于模型构建的重要变量。这些特征被纳入3个分类器进行分类。经过模型评估和超参数调整,确定了性能最佳的模型以及最显著的脑测量指标。
单变量特征选择 - 朴素贝叶斯模型表现最佳,准确率为0.66,宏平均AUC为0.86,敏感性和特异性分别为0.58 - 0.86至0.81 - 0.93。关键特征包括右侧峡部 - 扣带回皮质厚度、左侧颞下回面积、右侧颞上回厚度、右侧眶部平均曲率、左侧颞横回皮质厚度、左侧尾侧前扣带回皮质体积、右侧颞上沟岸面积以及右侧颞极厚度。
基于sMRI数据的机器学习模型在辅助精神分裂症、重度抑郁症和双相情感障碍的鉴别诊断方面显示出前景。扣带回和颞叶的皮质特征可能突出了每种疾病潜在的不同生物学机制。