Suppr超能文献

基于海藻酸钠和银耳多糖的生物大分子复合微球用于强化茶油的保护与递送:模拟消化的综合研究

Biomacromolecular composite microspheres based on sodium alginate and tremella fuciformis polysaccharide for enhanced protection and delivery of camellia oil: A comprehensive study in simulated digestion.

作者信息

Cai Yuanhong, Xu Peipei, Huang Runbing, Huang Jiayi, Zhan Junhua, Su Junpeng, You Ruiyun, Lu Yudong

机构信息

College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China.

College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China.

出版信息

Int J Biol Macromol. 2025 May;310(Pt 4):143481. doi: 10.1016/j.ijbiomac.2025.143481. Epub 2025 Apr 24.

Abstract

This study presents the development of a novel polysaccharide biomolecule composite microsphere system based on sodium alginate (SA) and tremella fuciformis polysaccharide (TFP) for the encapsulation and controlled release of camellia oil (CO). The system leverages the synergistic properties of these two bioactive biopolymers to enhance the protection and bioavailability of CO during simulated digestion. The microspheres, characterized by their spherical structure and uniform particle size distribution, were comprehensively evaluated for stability, elemental composition, and thermal stability using techniques such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The results confirmed a significant improvement in the elemental composition and surface properties of the microspheres due to the incorporation of CO, which enhanced their stability. In simulated digestion experiments, the microspheres demonstrated excellent gastric acid tolerance and intestinal release, achieving a high encapsulation efficiency of 99.59 % and an oil loading capacity of 80.67 %, effectively protecting and targeting the release of CO. Moreover, the microspheres exhibited significant antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Overall, the SA/TFP/CO microspheres represent an ideal delivery system for CO, demonstrating considerable potential in the fields of food science and biomedicine.

摘要

本研究提出了一种基于海藻酸钠(SA)和银耳多糖(TFP)的新型多糖生物分子复合微球系统,用于山茶油(CO)的包封和控释。该系统利用这两种生物活性生物聚合物的协同特性,在模拟消化过程中增强CO的保护作用和生物利用度。通过扫描电子显微镜(SEM)、能量色散光谱(EDS)、傅里叶变换红外光谱(FT-IR)和热重分析(TGA)等技术,对具有球形结构和均匀粒径分布的微球的稳定性、元素组成和热稳定性进行了全面评估。结果证实,由于CO的加入,微球的元素组成和表面性质有显著改善,从而提高了其稳定性。在模拟消化实验中,微球表现出优异的耐胃酸性和肠道释放性能,包封效率高达99.59%,载油能力为80.67%,有效地保护并靶向释放CO。此外,微球对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)表现出显著的抗菌活性。总体而言,SA/TFP/CO微球是CO的理想递送系统,在食品科学和生物医学领域具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验