Tian Yu, Hadikhani Pooria, Alati Nada, Richards Bryce S, Huang Gan
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Institute for Applied Materials - Electrochemical Technologies, Karlsruhe Institute of Technology, Adenauerring 20b, 76131, Karlsruhe, Germany.
Adv Sci (Weinh). 2025 Jul;12(28):e2503205. doi: 10.1002/advs.202503205. Epub 2025 Apr 27.
Utilizing solar energy to produce green hydrogen is sustainable, but achieving high efficiencies remains challenging. In this study, a hybrid solar spectral-splitting photovoltaic-thermal hydrogen (SSPVTH) system is developed. Leveraging emerging membrane-less electrolyzers, this system simultaneously employs photovoltaics and solar thermal energy to maximize solar-to-hydrogen (STH) production efficiency. The SSPVTH system based on gallium arsenide solar cells achieves an STH efficiency of 21.1%, representing a 31.1% relative improvement over a conventional PV-electrolyzer that relies solely on photovoltaic electricity for water electrolysis. When equipped with perovskite photovoltaics, the system attains an STH efficiency of up to 19.0%. Additionally, with the integration of direct current power converters, the system maintains relatively stable performance across varying solar irradiance levels. Overall, this study provides a new design with the potential for achieving high-efficiency hydrogen production through hybrid solar technologies.
利用太阳能生产绿色氢能是可持续的,但要实现高效率仍具有挑战性。在本研究中,开发了一种混合太阳能光谱分裂光伏-热制氢(SSPVTH)系统。该系统利用新兴的无膜电解槽,同时采用光伏发电和太阳能热能,以最大限度地提高太阳能制氢(STH)效率。基于砷化镓太阳能电池的SSPVTH系统实现了21.1%的STH效率,相对于仅依靠光伏电力进行水电解的传统光伏-电解槽,相对提高了31.1%。当配备钙钛矿光伏电池时,该系统的STH效率高达19.0%。此外,通过集成直流电源转换器,该系统在不同的太阳辐照度水平下保持相对稳定的性能。总体而言,本研究提供了一种新的设计,具有通过混合太阳能技术实现高效制氢的潜力。