Wu Xiaoyan, Lu Xunxi, Zhang Wenchuan, Zhong Xiaorong, Bu Hong, Zhang Zhang
Department of Pathology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Breast Pathology and Artificial Intelligence, West China Hospital, Sichuan University, Chengdu, China.
Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, Chengdu, China.
Breast. 2025 Apr 24;82:104484. doi: 10.1016/j.breast.2025.104484.
While existing multi-gene assays aid adjuvant treatment decisions, no gene signature has identified HR+/HER2- early breast cancer (EBC) patients at high recurrence risk post-chemo-endocrine therapy (C-ET).
Clinical data and RNA sequencing information from 1457 HR+/HER2- breast cancer patients were collected from West China Hospital, the GEO database, and the TCGA database. Using univariate Cox regression, gene set enrichment analysis, and LASSO regression, ten key genes associated with recurrence were identified. A comprehensive prognostic model was developed by combining the 10-gene risk score with clinicopathological features, and a nomogram was created to predict 3-, 5-, and 7-year recurrence-free survival (RFS). The model's performance was evaluated using AUC and decision curve analysis (DCA).
The 10-gene risk score was significantly associated with recurrence risk of HR+/HER2- EBC after C-ET and effectively distinguished between high-risk and low-risk patients (training: HR: 6.37, P < 0.001; validation: HR: 4.51, P < 0.001). It maintained consistent stratification efficacy across different treatment regimens, clinical stages, and grades. Compared to existing multi-gene signatures (21-gene, 70-gene, EndoPredict, PAM50, GGI), HR+/HER2- EBC patients identified as high-risk by the 10-gene risk score exhibited a higher 10-year cumulative recurrence rate following C-ET. In multivariate Cox regression analysis, the 10-gene risk score remained an independent prognostic factor in both the training and validation sets. The comprehensive model, integrating the 10-gene score and clinicopathological features, showed high predictive accuracy (AUC: 0.734, 0.778, 0.792 for 3, 5, 7 years in training; 0.691, 0.715, 0.709 in validation).
The 10-gene risk score can serve as a tool to predict recurrence risk in HR+/HER2- EBC patients following C-ET, assisting clinicians in developing personalized treatment plans for high-risk patients and ultimately improving patient prognosis.
虽然现有的多基因检测有助于辅助治疗决策,但尚无基因特征能够识别化疗 - 内分泌治疗(C-ET)后复发风险高的HR + /HER2-早期乳腺癌(EBC)患者。
收集来自华西医院、GEO数据库和TCGA数据库的1457例HR + /HER2-乳腺癌患者的临床数据和RNA测序信息。使用单变量Cox回归、基因集富集分析和LASSO回归,确定了10个与复发相关的关键基因。通过将10基因风险评分与临床病理特征相结合,建立了一个综合预后模型,并创建了一个列线图来预测3年、5年和7年无复发生存率(RFS)。使用AUC和决策曲线分析(DCA)评估模型的性能。
10基因风险评分与C-ET后HR + /HER2- EBC的复发风险显著相关,并有效区分了高危和低危患者(训练集:HR:6.37,P < 0.001;验证集:HR:4.51,P < 0.001)。它在不同的治疗方案、临床分期和分级中保持一致的分层效果。与现有的多基因特征(21基因、70基因、EndoPredict、PAM50、GGI)相比,10基因风险评分确定为高危的HR + /HER2- EBC患者在C-ET后表现出更高的10年累积复发率。在多变量Cox回归分析中,10基因风险评分在训练集和验证集中均为独立的预后因素。整合10基因评分和临床病理特征的综合模型显示出较高的预测准确性(训练集中3年、5年、7年的AUC分别为0.734、0.778、0.792;验证集中分别为0.691、0.715、0.709)。
10基因风险评分可作为预测HR + /HER2- EBC患者C-ET后复发风险的工具,帮助临床医生为高危患者制定个性化治疗方案,最终改善患者预后。