Suppr超能文献

医疗保健领域的数字创新:量化数字脓毒症筛查工具对患者预后的影响——一项多中心自然实验。

Digital innovation in healthcare: quantifying the impact of digital sepsis screening tools on patient outcomes-a multi-site natural experiment.

作者信息

Honeyford Kate, Timney Alf, Lazzarino Runa, Welch John, Brent Andrew Jonathan, Kinderlerer Anne, Ghazal Peter, Gordon Anthony C, Patil Shashank, Cooke Graham, Costelloe Ceire E

机构信息

Division of Clinical Studies, Institute of Cancer Research, Sutton, London, UK.

GBSH, University College London, London, UK.

出版信息

BMJ Health Care Inform. 2025 Apr 27;32(1):e101141. doi: 10.1136/bmjhci-2024-101141.

Abstract

INTRODUCTION

The National Health Service (NHS) 'move to digital' incorporating electronic patient record systems (EPR) facilitates the translation of paper-based screening tools into digital systems, including digital sepsis alerts. We evaluated the impact of sepsis screening tools on in-patient 30-day mortality across four multi-hospital NHS Trusts, each using a different algorithm for early detection of sepsis.

METHODS

Using quasi-experimental methods, we investigated the impact of the screening tools. Individual-level EPR data for 718 000 patients between 2010 and 2020 were extracted to assess the impact on a target cohort and control cohort using interrupted time series analysis, based on a binomial regression model. We included one Trust which uses a paper-based screening tool to compare the impact of digital and paper-based interventions, and one Trust which did not introduce a sepsis screening tool, but did introduce an EPR.

RESULTS

All Trusts had lower odds of mortality, between 5% and 12%, after the introduction of the sepsis screening tool, before adjustment for pre-existing trends or patient casemix. After adjustment for existing trends, there was a significant reduction in mortality in two of the three Trusts which introduced sepsis screening tools. We also observed age-specific effects across Trusts.

CONCLUSION

Our findings confirm that patients with similar profiles have a lower mortality risk, consistent with our previous work. This study, conducted across multiple NHS Trusts, suggests that alerts could be tailored to specific patient groups based on age-related effects. Different Trusts may require unique indicators, thresholds, actions and treatments. Including additional EPR information could further enhance personalised care.

摘要

引言

英国国家医疗服务体系(NHS)“向数字化迈进”,引入电子病历系统(EPR),这有助于将纸质筛查工具转化为数字系统,包括数字脓毒症警报。我们评估了脓毒症筛查工具对四个多医院NHS信托机构住院患者30天死亡率的影响,每个机构使用不同的算法进行脓毒症早期检测。

方法

我们采用准实验方法研究了筛查工具的影响。提取了2010年至2020年间718000名患者的个体层面电子病历数据,基于二项式回归模型,使用中断时间序列分析来评估对目标队列和对照队列的影响。我们纳入了一个使用纸质筛查工具的信托机构,以比较数字和纸质干预措施的影响,以及一个未引入脓毒症筛查工具但引入了电子病历系统的信托机构。

结果

在引入脓毒症筛查工具后,在对既往趋势或患者病例组合进行调整之前,所有信托机构的死亡几率均降低了5%至12%。在对现有趋势进行调整后,引入脓毒症筛查工具的三个信托机构中有两个机构的死亡率显著降低。我们还观察到各信托机构存在年龄特异性影响。

结论

我们的研究结果证实,具有相似特征的患者死亡风险较低,这与我们之前的研究结果一致。这项在多个NHS信托机构开展的研究表明,可根据年龄相关影响为特定患者群体量身定制警报。不同的信托机构可能需要独特的指标、阈值、行动和治疗方法。纳入更多电子病历信息可进一步加强个性化护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c2/12035476/d35929ca922d/bmjhci-32-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验