Wu Bin, Li Mingna, Yang Fan, Yuan Le, Lu Yi, Jiang Di, Yi Yang, Yan Bin
School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, P. R. China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Apr 25;42(2):359-365. doi: 10.7507/1001-5515.202408014.
Alveolar bone reconstruction simulation is an effective means for quantifying orthodontics, but currently, it is not possible to directly obtain human alveolar bone material models for simulation. This study introduces a prediction method for the equivalent shear modulus of three-dimensional random porous materials, integrating the first-order Ogden hyperelastic model to construct a computed tomography (CT) based porous hyperelastic Ogden model (CT-PHO) for human alveolar bone. Model parameters are derived by combining results from micro-CT, nanoindentation experiments, and uniaxial compression tests. Compared to previous predictive models, the CT-PHO model shows a lower root mean square error (RMSE) under all bone density conditions. Simulation results using the CT-PHO model parameters in uniaxial compression experiments demonstrate more accurate prediction of the mechanical behavior of alveolar bone under compression. Further prediction and validation with different individual human alveolar bone samples yield accurate results, confirming the generality of the CT-PHO model. The study suggests that the CT-PHO model proposed in this paper can estimate the material properties of human alveolar bone and may eventually be used for bone reconstruction simulations to guide clinical treatment.
牙槽骨重建模拟是正畸量化的有效手段,但目前尚无法直接获取用于模拟的人体牙槽骨材料模型。本研究介绍了一种三维随机多孔材料等效剪切模量的预测方法,结合一阶Ogden超弹性模型构建基于计算机断层扫描(CT)的人体牙槽骨多孔超弹性Ogden模型(CT-PHO)。通过结合显微CT、纳米压痕实验和单轴压缩试验的结果来推导模型参数。与先前的预测模型相比,CT-PHO模型在所有骨密度条件下均显示出较低的均方根误差(RMSE)。在单轴压缩实验中使用CT-PHO模型参数的模拟结果表明,对压缩状态下牙槽骨力学行为的预测更为准确。对不同个体人体牙槽骨样本的进一步预测和验证产生了准确的结果,证实了CT-PHO模型的通用性。该研究表明,本文提出的CT-PHO模型可以估计人体牙槽骨的材料特性,并最终可能用于骨重建模拟以指导临床治疗。