Durukan Canan, Faierson Jannik, van der Wal Isabel, Pérez Juan Lizandra, Hennig Sven, Grossmann Tom N
Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, Netherlands.
Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, Amsterdam, Netherlands.
J Pept Sci. 2025 Jun;31(6):e70024. doi: 10.1002/psc.70024.
The secondary structure plays a crucial role in the biological activity of peptides. Various strategies have been developed to stabilize particular peptide conformations, including sequence modifications and macrocyclization approaches. Often, the interplay between conformational constraint and flexibility is central to bioactivity. Here, we investigate how peptide α-helicity influences enzymatic head-to-tail cyclization using an engineered Sortase. We show that peptides with low helicity readily undergo intramolecular cyclization, while more rigid, helical peptides exhibit complex cyclization behaviors including cyclic dimer formation. These findings reveal that increased peptide rigidity can redirect enzymatic reactions from intramolecular to intermolecular processes, and demonstrates how changes in molecular rigidity can guide chemical reactivity. These insights can advance the design of peptide-derived materials, hydrogels, and stimuli-responsive probes.
二级结构在肽的生物活性中起着至关重要的作用。人们已经开发出各种策略来稳定特定的肽构象,包括序列修饰和大环化方法。通常,构象限制和灵活性之间的相互作用是生物活性的核心。在这里,我们研究了肽的α-螺旋度如何使用工程化分选酶影响酶促头对尾环化。我们表明,低螺旋度的肽很容易发生分子内环化,而更刚性的螺旋肽则表现出复杂的环化行为,包括环状二聚体的形成。这些发现表明,肽刚性的增加可以将酶促反应从分子内过程重定向到分子间过程,并证明了分子刚性的变化如何指导化学反应性。这些见解可以推动肽衍生材料、水凝胶和刺激响应探针的设计。