Feng Chuanzhen, Bo Kaiwen, Wan Jin, Zhang Huijuan, Wang Yu
The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, 400044, P.R. China.
Angew Chem Int Ed Engl. 2025 Jul;64(27):e202505211. doi: 10.1002/anie.202505211. Epub 2025 May 6.
Electrochemical nitrate reduction reaction (NORR) for ammonia synthesis under acidic conditions offers significant advantages, like direct fertilizer production and prevention of ammonia volatilization. However, three critical challenges persist: instability of metal-based catalysts, competition from the hydrogen evolution reaction (HER), and proton depletion leading to species imbalance. Here, we developed a novel metal-free heteronuclear diatomic-based catalyst that simultaneously addresses these challenges through atomic-level triple synergy engineering. Silicon-iodine dual-atoms are precisely anchored on nickel oxide ultrathin nanosheets supported on carbon cloth (Si/I-NiO@CC) via a gradient-heating co-loading method. Si/I-NiO@CC establishes a self-sustaining catalytic system, achieving a remarkable Faradaic efficiency of 96.8% at -0.3 V versus RHE and record-breaking operational stability of 420 h in acidic electrolyte, surpassing the performance of all reported acid NORR electrocatalysts to date. Advanced in situ spectroscopic characterization combined with electrochemical evaluation reveals the triple synergy mechanism: electron-deficient Ni and oxygen vacancies generate abundant active sites while mitigating HER competition, iodine-mediated proton reservoirs dynamically regulate H* coverage to maintain species balance, and covalent Si─O─Ni interfacial bonding inhibits metal leaching and stabilizes the catalytic system. This work establishes a constructive guideline for the rational engineering of high-efficiency electrocatalysts for selective acidic NORR.
酸性条件下用于合成氨的电化学硝酸盐还原反应(NORR)具有显著优势,如直接生产肥料和防止氨挥发。然而,仍存在三个关键挑战:金属基催化剂的不稳定性、析氢反应(HER)的竞争以及质子消耗导致的物种失衡。在此,我们开发了一种新型的无金属异核双原子基催化剂,通过原子级三重协同工程同时应对这些挑战。硅 - 碘双原子通过梯度加热共负载法精确锚定在碳布负载的氧化镍超薄纳米片(Si/I-NiO@CC)上。Si/I-NiO@CC建立了一个自我维持的催化体系,在相对于可逆氢电极(RHE)为 -0.3 V时实现了96.8%的显著法拉第效率,并在酸性电解质中具有破纪录的420小时的操作稳定性,超过了迄今为止所有报道的酸性NORR电催化剂的性能。先进的原位光谱表征与电化学评估相结合揭示了三重协同机制:缺电子的镍和氧空位产生丰富的活性位点,同时减轻HER竞争,碘介导的质子库动态调节H*覆盖度以维持物种平衡,并且共价Si─O─Ni界面键合抑制金属浸出并稳定催化体系。这项工作为选择性酸性NORR高效电催化剂的合理设计建立了建设性的指导方针。