Suppr超能文献

波兰长期护理机构中不健康食品消费的人口统计学和身体因素

Demographic and Physical Determinants of Unhealthy Food Consumption in Polish Long-Term Care Facilities.

作者信息

Ase Aia, Borowicz Jacek, Rakocy Kamil, Krzych-Fałta Edyta, Samoliński Bolesław

机构信息

Department of the Prevention of Environmental Hazard, Allergology and Immunology, Faculty of Health Sciences, Medical University of Warsaw, 1a Banacha Street, 02-091 Warsaw, Poland.

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, 15/17 Tyniecka Street, 02-630 Warsaw, Poland.

出版信息

Nutrients. 2025 Mar 13;17(6):1008. doi: 10.3390/nu17061008.

Abstract

Unhealthy food consumption in long-term care facilities (LTCFs) contributes to poor health outcomes among residents. This study aimed to assess its prevalence, identify demographic and physical risk factors, and propose targeted interventions. A mixed-methods study (2017-2021) analyzed data from 1000 Polish LTCF residents (aged 35-105 years). Anthropometric measurements, bioimpedance analyses, dietary assessments, and physical activity records were collected. Food items were classified as "healthy" or "unhealthy" using an AI-based Large Language Model (LLM), applying WHO guidelines and the NOVA classification system. Logistic regression and chi-square tests assessed associations between unhealthy food consumption and marital status, education level, mobility aid use, and portion control. Unhealthy food consumption prevalence was 15.6%. Married residents had significantly higher rates than unmarried individuals (22.6% vs. 14.3%, < 0.01). Lower educational attainment correlated with increased risk (partial primary education: 34.7% vs. tertiary education: 8.1%). Mobility aid users exhibited elevated consumption (cane: 34.6%; walker: 22.6%). Poor portion control showed the strongest association (OR = 3.2, 95% CI: 1.8-5.7). Marital status, educational disparities, mobility limitations, and portion control were key modifiable risk factors. Findings suggest the need for targeted nutrition programs, caregiver education, and policy reforms to improve dietary literacy and meal portioning. Future research should validate AI-based food classification methods, assess long-term intervention outcomes, and expand studies to diverse LTCF settings. These findings align with Poland's National Health Programme and provide actionable insights for global LTCF populations.

摘要

长期护理机构(LTCFs)中不健康食品的消费导致居民健康状况不佳。本研究旨在评估其流行程度,确定人口统计学和身体风险因素,并提出有针对性的干预措施。一项混合方法研究(2017 - 2021年)分析了1000名波兰长期护理机构居民(年龄在35 - 105岁之间)的数据。收集了人体测量、生物电阻抗分析、饮食评估和身体活动记录。使用基于人工智能的大语言模型(LLM),应用世界卫生组织指南和诺瓦分类系统,将食品项目分为“健康”或“不健康”。逻辑回归和卡方检验评估了不健康食品消费与婚姻状况、教育水平、行动辅助工具使用和食量控制之间的关联。不健康食品消费流行率为15.6%。已婚居民的比例显著高于未婚者(22.6%对14.3%,<0.01)。教育程度较低与风险增加相关(小学部分教育:34.7%对高等教育:8.1%)。使用行动辅助工具的人消费较高(手杖使用者:34.6%;步行器使用者:22.6%)。食量控制不佳显示出最强的关联(OR = 3.2,95% CI:1.8 - 5.7)。婚姻状况、教育差异、行动限制和食量控制是关键的可改变风险因素。研究结果表明需要有针对性的营养计划、护理人员教育和政策改革,以提高饮食素养和膳食分量控制。未来的研究应验证基于人工智能的食品分类方法,评估长期干预结果,并将研究扩展到不同的长期护理机构环境。这些发现与波兰的国家卫生计划一致,并为全球长期护理机构人群提供了可操作的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885f/11945014/d7dde3509bad/nutrients-17-01008-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验