Agati Milo, Romi Sebastiano, Fanetti Samuele, Radacki Krzysztof, Hanfland Michael, Braunschweig Holger, Marder Todd B, Clark Stewart J, Friedrich Alexandra, Bini Roberto
LENS, European Laboratory for Non-linear Spectroscopy Via N. Carrara 1 I-50019 Sesto Fiorentino Firenze Italy
Dipartimento di Chimica "Ugo Schiff", Università di Firenze Via Della Lastruccia 3 I-50019 Sesto Fiorentino Firenze Italy.
Chem Sci. 2025 Apr 4. doi: 10.1039/d5sc00432b.
This study addresses azobenzene's structural compression and reactivity under hydrostatic high-pressure conditions. Synchrotron X-ray diffraction data of single crystals compressed with neon as the pressure-transmitting medium allowed the refinement of the crystal structure up to 28 GPa, at which the onset of the reaction was observed. Analysis of the pressure-dependent lattice parameters reveals a first-order isostructural phase transition at 13 GPa. We have solved the crystal structure of the high-pressure phase of azobenzene offering a key insight into the strong contribution of stress on the structural compression mechanism and crystal's reaction chemistry at elevated pressures. While the collapse of the cell parameter, previously observed under non-hydrostatic conditions, was identified as the crucial step toward the formation of azobenzene-derived double-core nanothreads, under quasi-hydrostatic conditions the compression of the cell parameters up to 33 GPa followed a different route. The evolution of the cell parameters and the refinement of the crystal structure close to the onset of the reaction identified a topochemical polymerization path, corroborated by reaction kinetics data by infrared spectroscopy and by computed polymer structures, suggesting a complex growth process, resulting in a distinctly different material compared to that formed upon non-hydrostatic compression. These findings underscore the pivotal role of compression conditions in determining the reaction pathways of azobenzene, providing novel insights for its application in nanomaterial synthesis.
本研究探讨了偶氮苯在静水高压条件下的结构压缩和反应活性。以氖气作为压力传递介质对单晶进行压缩,同步辐射X射线衍射数据使得晶体结构在高达28吉帕的压力下得以精修,在此压力下观察到了反应的起始。对压力依赖型晶格参数的分析揭示了在13吉帕时发生的一级同构相变。我们解析了偶氮苯高压相的晶体结构,这为深入了解应力对结构压缩机制以及高压下晶体反应化学的重要贡献提供了关键见解。虽然在非静水条件下先前观察到的晶胞参数崩塌被确定为形成偶氮苯衍生的双核纳米线的关键步骤,但在准静水条件下,晶胞参数压缩至33吉帕遵循了不同的路径。晶胞参数的演变以及接近反应起始时晶体结构的精修确定了一种拓扑化学聚合路径,红外光谱的反应动力学数据以及计算得到的聚合物结构证实了这一路径,这表明了一个复杂的生长过程,导致形成了与非静水压缩形成的材料截然不同的材料。这些发现强调了压缩条件在决定偶氮苯反应路径方面的关键作用,为其在纳米材料合成中的应用提供了新的见解。