Suppr超能文献

通过反应导向杂原子控制固态途径:通过选择性环加成构建有序哒嗪纳米线。

Solid-State Pathway Control via Reaction-Directing Heteroatoms: Ordered Pyridazine Nanothreads through Selective Cycloaddition.

机构信息

Earth and Planets Laboratory, Carnegie Institution for Science, Washington, D.C. 20015, United States.

Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain.

出版信息

J Am Chem Soc. 2022 Feb 9;144(5):2073-2078. doi: 10.1021/jacs.1c12143. Epub 2022 Jan 25.

Abstract

Nanothreads are one-dimensional nanomaterials composed of a primarily sp hydrocarbon backbone, typically formed through the compression of small molecules to high pressures. Although nanothreads have been synthesized from a range of precursors, controlling reaction pathways to produce atomically precise materials remains a difficult challenge. Here, we show how heteroatoms within precursors can serve as "thread-directing" groups by selecting for specific cycloaddition reaction pathways. By using a less-reactive diazine group within a six-membered aromatic ring, we successfully predict and synthesize the first carbon nanothread material derived from pyridazine (1,2-diazine, CHN). Compared with previous nanothreads, the synthesized polypyridazine, shows a predominantly uniform chemical structure with exceptional long-range order, allowing for structural characterization using vibrational spectroscopy and X-ray diffraction. The results demonstrate how thread-directing groups can be used for reaction pathway control and the formation of chemically precise nanothreads with a high degree of structural order.

摘要

纳米线是一维纳米材料,由主要为 sp 杂化的碳氢骨架组成,通常通过将小分子压缩至高压来形成。尽管已经从多种前体制备出了纳米线,但控制反应途径以生成原子级精确的材料仍然是一个具有挑战性的难题。在这里,我们展示了前体中的杂原子如何通过选择特定的环加成反应途径来充当“线程导向”基团。通过在六元芳环中使用较少反应性的二嗪基团,我们成功地预测并合成了首个源自哒嗪(1,2-二嗪,CHN)的碳纳米线材料。与以前的纳米线相比,合成的聚哒嗪表现出主要均匀的化学结构和卓越的长程有序性,这允许使用振动光谱和 X 射线衍射进行结构表征。结果表明,线程导向基团可用于控制反应途径并形成具有高度结构有序性的化学精确纳米线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验