Suppr超能文献

用于加速反向系间窜越的贝叶斯分子优化

Bayesian molecular optimization for accelerating reverse intersystem crossing.

作者信息

Won Taehyun, Aizawa Naoya, Harabuchi Yu, Kurihara Reo, Suzuki Mitsuharu, Maeda Satoshi, Pu Yong-Jin, Nakayama Ken-Ichi

机构信息

Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan.

Center for Future Innovation, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan.

出版信息

Chem Sci. 2025 Apr 15;16(21):9303-9310. doi: 10.1039/d5sc01903f. eCollection 2025 May 28.

Abstract

Spin conversion in molecular excited states is crucial for the development of next-generation optoelectronic devices. However, optimizing molecular structures for rapid spin conversion has relied on time-consuming experimental trial-and-error, which limits the elucidation of the structure-property relationships. Here, we report a Bayesian molecular optimization approach that accelerates virtual screening for rapid triplet-to-singlet reverse intersystem crossing (RISC). One of the molecules identified through this virtual screening exhibits a fast RISC rate constant of 1.3 × 10 s and a high external electroluminescence quantum efficiency of 25.7%, which remains as high as 22.8% even at a practical luminance of 5000 cd m in organic light-emitting diodes. analysis of the trained machine learning model reveals the impact of molecular structural features on spin conversion, paving the way for informed and precise materials development.

摘要

分子激发态中的自旋转换对于下一代光电器件的发展至关重要。然而,通过耗时的实验试错来优化分子结构以实现快速自旋转换,这限制了对结构-性能关系的阐释。在此,我们报告一种贝叶斯分子优化方法,该方法加速了对快速三重态到单重态反向系间窜越(RISC)的虚拟筛选。通过这种虚拟筛选鉴定出的一种分子表现出1.3×10 s的快速RISC速率常数和25.7%的高外部电致发光量子效率,即使在有机发光二极管5000 cd m的实际亮度下,该效率仍高达22.8%。对训练后的机器学习模型的分析揭示了分子结构特征对自旋转换的影响,为明智且精确的材料开发铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验