Suppr超能文献

与双能X线吸收法和骨折风险评估工具相比,人工智能预测骨质疏松性骨折的准确性:一项系统评价。

Accuracy of artificial intelligence in prediction of osteoporotic fractures in comparison with dual-energy X-ray absorptiometry and the Fracture Risk Assessment Tool: A systematic review.

作者信息

Sadat-Ali Mir, Alzahrani Bandar A, Alqahtani Turki S, Alotaibi Musaad A, Alhalafi Abdallah M, Alsousi Ahmed A, Alasiri Abdullah M

机构信息

Department of Orthopedic Surgery, Haifa Medical Complex, Al Khobar 32424, Saudi Arabia.

Department of Orthopedics, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia.

出版信息

World J Orthop. 2025 Apr 18;16(4):103572. doi: 10.5312/wjo.v16.i4.103572.

Abstract

BACKGROUND

Osteoporotic fractures, whether due to postmenopausal or senile causes, impose a significant financial burden on developing countries and diminish quality of life. Recent advancements in artificial intelligence (AI) algorithms have demonstrated immense potential in predicting osteoporotic fractures.

AIM

To assess and compare the efficacy of AI models against dual-energy X-ray absorptiometry (DXA) and the Fracture Risk Assessment Tool (FRAX) in predicting fragility fractures.

METHODS

We conducted a literature search in English using electronic databases, including PubMed, Web of Science, and Scopus, for studies published until May 2024. The keywords employed were fragility fractures, osteoporosis, AI, deep learning, machine learning, and convolutional neural network. The inclusion criteria for selecting publications were based on studies involving patients with proximal femur and vertebral column fractures due to osteoporosis, utilizing AI algorithms, and analyzing the site of fracture and accuracy for predicting fracture risk using SPSS version 29 (Chicago, IL, United States).

RESULTS

We identified 156 publications for analysis. After applying our inclusion criteria, 24489 patients were analyzed from 13 studies. The mean area under the receiver operating characteristic curve was 0.925 ± 0.69. The mean sensitivity was 68.3% ± 15.3%, specificity was 85.5% ± 13.4%, and positive predictive value was 86.5% ± 6.3%. DXA showed a sensitivity of 37.0% and 74.0%, while FRAX demonstrated a sensitivity of 45.7% and 84.7%. The value for sensitivity between DXA and AI was < 0.0001, while for FRAX it was < 0.0001 and 0.2.

CONCLUSION

This review found that AI is a valuable tool to analyze and identify patients who will suffer from fragility fractures before they occur, demonstrating superiority over DXA and FRAX. Further studies are necessary to be conducted across various centers with diverse population groups, larger datasets, and a longer duration of follow-up to enhance the predictive performance of the AI models before their universal application.

摘要

背景

骨质疏松性骨折,无论是由绝经后还是老年原因引起,都给发展中国家带来了巨大的经济负担,并降低了生活质量。人工智能(AI)算法的最新进展已显示出在预测骨质疏松性骨折方面的巨大潜力。

目的

评估并比较人工智能模型与双能X线吸收法(DXA)和骨折风险评估工具(FRAX)在预测脆性骨折方面的疗效。

方法

我们使用包括PubMed、科学网和Scopus在内的电子数据库进行了英文文献检索,以查找截至2024年5月发表的研究。使用的关键词为脆性骨折、骨质疏松症、人工智能、深度学习、机器学习和卷积神经网络。选择出版物的纳入标准基于涉及因骨质疏松症导致股骨近端和脊柱骨折患者的研究,利用人工智能算法,并使用SPSS 29版(美国伊利诺伊州芝加哥)分析骨折部位和预测骨折风险的准确性。

结果

我们确定了156篇出版物进行分析。应用纳入标准后,对13项研究中的24489名患者进行了分析。受试者工作特征曲线下的平均面积为0.925±0.69。平均敏感性为68.3%±15.3%,特异性为85.5%±13.4%,阳性预测值为86.5%±6.3%。DXA的敏感性为37.0%和74.0%,而FRAX的敏感性为45.7%和84.7%。DXA与人工智能之间敏感性的 值<0.0001,而FRAX的 值为<0.0001和0.2。

结论

本综述发现,人工智能是一种有价值的工具,可在脆性骨折发生前分析并识别可能发生骨折的患者,显示出优于DXA和FRAX的优势。有必要在不同中心对不同人群、更大数据集和更长随访期进行进一步研究,以提高人工智能模型在广泛应用前的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a8a/12019139/4347a3387891/103572-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验