基于 Genant 半定量标准的改良方法对 X 射线影像中脊柱骨质疏松性压缩性骨折进行深度学习分类。

Deep Learning Classification of Spinal Osteoporotic Compression Fractures on Radiographs using an Adaptation of the Genant Semiquantitative Criteria.

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington.

Department of Medicine, University of California - Davis, Sacramento, California.

出版信息

Acad Radiol. 2022 Dec;29(12):1819-1832. doi: 10.1016/j.acra.2022.02.020. Epub 2022 Mar 26.

Abstract

RATIONALE AND OBJECTIVES

Osteoporosis affects 9% of individuals over 50 in the United States and 200 million women globally. Spinal osteoporotic compression fractures (OCFs), an osteoporosis biomarker, are often incidental and under-reported. Accurate automated opportunistic OCF screening can increase the diagnosis rate and ensure adequate treatment. We aimed to develop a deep learning classifier for OCFs, a critical component of our future automated opportunistic screening tool.

MATERIALS AND METHODS

The dataset from the Osteoporotic Fractures in Men Study comprised 4461 subjects and 15,524 spine radiographs. This dataset was split by subject: 76.5% training, 8.5% validation, and 15% testing. From the radiographs, 100,409 vertebral bodies were extracted, each assigned one of two labels adapted from the Genant semiquantitative system: moderate to severe fracture vs. normal/trace/mild fracture. GoogLeNet, a deep learning model, was trained to classify the vertebral bodies. The classification threshold on the predicted probability of OCF outputted by GoogLeNet was set to prioritize the positive predictive value (PPV) while balancing it with the sensitivity. Vertebral bodies with the top 0.75% predicted probabilities were classified as moderate to severe fracture.

RESULTS

Our model yielded a sensitivity of 59.8%, a PPV of 91.2%, and an F score of 0.72. The areas under the receiver operating characteristic curve (AUC-ROC) and the precision-recall curve were 0.99 and 0.82, respectively.

CONCLUSION

Our model classified vertebral bodies with an AUC-ROC of 0.99, providing a critical component for our future automated opportunistic screening tool. This could lead to earlier detection and treatment of OCFs.

摘要

背景与目的

在美国,50 岁以上人群中骨质疏松症的发病率为 9%,全球有 2 亿女性受到影响。脊柱骨质疏松性压缩性骨折(OCFs)是骨质疏松症的一个生物标志物,通常是偶然发现的,且报告不足。准确的自动化机会性 OCF 筛查可以提高诊断率并确保进行充分的治疗。我们旨在开发一种用于 OCF 的深度学习分类器,这是我们未来自动化机会性筛查工具的关键组成部分。

材料与方法

来自男性骨质疏松性骨折研究的数据集中包含 4461 名受试者和 15524 张脊柱 X 光片。该数据集按照受试者进行划分:76.5%用于训练,8.5%用于验证,15%用于测试。从 X 光片中提取了 100409 个椎体,每个椎体根据从 Genant 半定量系统改编的两个标签之一进行分类:中度至重度骨折或正常/痕量/轻度骨折。使用深度神经网络模型 GoogLeNet 对椎体进行分类。GoogLeNet 输出的 OCF 预测概率的分类阈值设定为优先考虑阳性预测值(PPV),同时平衡其与敏感性。将预测概率最高的 0.75%的椎体分类为中度至重度骨折。

结果

我们的模型敏感性为 59.8%,PPV 为 91.2%,F 分数为 0.72。接收器操作特征曲线(AUC-ROC)和精度-召回曲线下的面积分别为 0.99 和 0.82。

结论

我们的模型对椎体的分类具有 0.99 的 AUC-ROC,为我们未来的自动化机会性筛查工具提供了关键组成部分。这可能导致更早地发现和治疗 OCFs。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索