Zhang Zhengli, Ding Zhao, Guo Xiang, Yang Chen, Wang Yi, Deng Yong, Chen Shaolu, Liu Xuefei, Li Junli
College of Big Data and Information Engineering, Guizhou University, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China.
Engineering Research Center of Semiconductor Power Device Reliability, Ministry of Education, Huaxi Road, Huaxi District, Guiyang, Guizhou550025, P. R. China.
ACS Omega. 2025 Apr 14;10(15):14949-14960. doi: 10.1021/acsomega.4c10273. eCollection 2025 Apr 22.
The joining of Y6 has effectively promoted the power conversion efficiency (PCE) of organic solar cells, and the impact of its end-group modification on the PCE is significant. Here, eight different groups are introduced to modify the end-group of Y6, forming eight acceptors named V1, V2, V3, V4, V5, V6, V7, and R. The excited states, light absorption properties, and intermolecular electron transfer are discussed by the density functional theory. The density of state, average local ionization energy, Hirshfeld population, ionization potential, electron affinity, and electron mobility are also calculated. Results show that V7 obtains the largest red-shift in the UV-visible absorption spectra (787.55 nm). V7 and V5 have better electronic coupling while exhibiting the leading electron mobility (0.9577 and 0.4383 cm V s). Acceptors with rigid skeletons, good planarity, minimal steric hindrance, and locally uniform ALIE distributions have the potential to achieve higher electron mobility. These results indicate that precise end-group engineering can effectively regulate the electron mobility of acceptors, thereby increasing the PCE.
Y6 的连接有效地提高了有机太阳能电池的功率转换效率(PCE),并且其端基修饰对 PCE 的影响显著。在此,引入了八个不同的基团来修饰 Y6 的端基,形成了八个名为 V1、V2、V3、V4、V5、V6、V7 和 R 的受体。通过密度泛函理论讨论了激发态、光吸收特性和分子间电子转移。还计算了态密度、平均局部电离能、Hirshfeld 布居、电离势、电子亲和势和电子迁移率。结果表明,V7 在紫外可见吸收光谱中获得了最大的红移(787.55 nm)。V7 和 V5 具有更好的电子耦合,同时表现出领先的电子迁移率(0.9577 和 0.4383 cm V s)。具有刚性骨架、良好平面性、最小空间位阻和局部均匀的平均局部电离能分布的受体有潜力实现更高的电子迁移率。这些结果表明,精确的端基工程可以有效地调节受体的电子迁移率,从而提高 PCE。