Ohno Hiroaki, Kijima Junko, Ochi Yosuke, Shoji Masaaki, Taira Junichi, Mabuchi Takuya, Sato Yusuke
Department of Intelligent and Control Systems, Kyushu Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
Institute of Fluid Science, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
ACS Omega. 2025 Apr 7;10(15):15781-15789. doi: 10.1021/acsomega.5c01928. eCollection 2025 Apr 22.
The formation of biomolecular condensates via phase separation relates to various cellular functions. Reconstituting these condensates with designed molecules facilitates the exploration of their mechanisms and potential applications. Sequence-designed DNA nanostructures enable the investigation of how structural design influences condensate formation and the construction of functional artificial condensates. Despite the high designability of DNA-based condensates, free nanostructures that do not assemble into condensates remain a challenge. Combining DNA nanostructures with other molecules, such as peptides, represents a promising approach to overcoming the limitations of DNA condensates and gaining a deeper understanding of molecular condensates. Herein, we report the effects of cationic oligolysines with several residues on DNA condensate formation assembled from Y-shaped DNA nanostructures. DNA condensate formation was enhanced by oligolysines at an appropriate L/P ratio, which refers to the ratio of positively charged amine groups in lysine (L) to negatively charged nucleic acid phosphate groups (P). Oligolysines with five residues enhanced condensate formation while maintaining the sequence-specific interaction of DNA. In contrast, oligolysines inhibited condensate formation depending on the L/P ratio and residue number. This was attributed to nanostructure deformation caused by oligolysines. These results suggest that the amount and length of cationic peptides significantly affect the self-assembly of branched DNA nanostructures. This study offers important insights into biomolecular condensates that can guide further development of DNA/peptide hybrid condensates to enhance the functions of artificial condensates for use in artificial cells and molecular robots.
通过相分离形成生物分子凝聚物与多种细胞功能相关。用设计的分子重构这些凝聚物有助于探索其机制和潜在应用。序列设计的DNA纳米结构能够研究结构设计如何影响凝聚物的形成以及构建功能性人工凝聚物。尽管基于DNA的凝聚物具有高度的可设计性,但不组装成凝聚物的游离纳米结构仍然是一个挑战。将DNA纳米结构与其他分子(如肽)结合,是克服DNA凝聚物局限性并更深入了解分子凝聚物的一种有前景的方法。在此,我们报道了具有几个残基的阳离子寡聚赖氨酸对由Y形DNA纳米结构组装的DNA凝聚物形成的影响。在适当的L/P比(即赖氨酸中带正电荷的胺基团(L)与带负电荷的核酸磷酸基团(P)的比率)下,寡聚赖氨酸增强了DNA凝聚物的形成。具有五个残基的寡聚赖氨酸在保持DNA序列特异性相互作用的同时增强了凝聚物的形成。相比之下,寡聚赖氨酸根据L/P比和残基数抑制凝聚物的形成。这归因于寡聚赖氨酸引起的纳米结构变形。这些结果表明阳离子肽的数量和长度显著影响分支DNA纳米结构的自组装。这项研究为生物分子凝聚物提供了重要的见解,可指导DNA/肽混合凝聚物的进一步开发,以增强用于人工细胞和分子机器人的人工凝聚物的功能。