Mizumoto Guilherme Justiniano, Morgon Nelson Henrique, de Souza Aguinaldo Robinson, Ximenes Valdecir Farias
Departamento de Química, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Bauru, São Paulo 17033-360, Brazil.
Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-861, Brazil.
ACS Omega. 2025 Apr 11;10(15):15753-15761. doi: 10.1021/acsomega.5c01500. eCollection 2025 Apr 22.
Graphene quantum dots (GQDs) are water-soluble, are biocompatible, and exhibit low toxicity. These properties, along with their adjustable and efficient fluorescent emission, make GQDs valuable for biological applications, particularly as spectroscopic nanosensors. In this context, GQDs have been utilized to detect hypochlorous acid (HOCl). While HOCl is a well-known synthetic disinfectant, it is also naturally produced by the enzyme myeloperoxidase (MPO) in mammals. This heme-peroxidase also catalyzes the production of hypobromous acid (HOBr), a more potent halogenating agent. In our study, we compared the reactivity of HOCl and HOBr with GQDs. By monitoring the fluorescence bleaching of the GQDs, we demonstrated that HOBr is more reactive than HOCl. The increased reactivity was attributed to HOBr's higher electrophilicity. The electrophilic nature of the reaction was further confirmed by introducing nicotine as a chlorination catalyst. Anisole did not inhibit the electrophilic attack, confirming the high reactivity of GODs with HOBr. The enzyme MPO was used to generate HOBr through oxidation of Br by HO. Thus, the enzymatic activity of MPO could be monitored by GQDs' fluorescence bleaching, and the efficiency of MPO inhibitors could be evaluated. We applied differential function theory (DFT) methodologies to support our experimental findings, proposing a transition state for the electrophilic attack. Consistent with our experimental results, the energetic barrier for the reaction with HOBr was lower than that for HOCl. Overall, our results indicate the susceptibility of GQDs to electrophilic attacks by hypohalous acids and highlight new opportunities for biological applications.
石墨烯量子点(GQDs)具有水溶性、生物相容性且毒性低。这些特性,连同其可调节且高效的荧光发射,使得GQDs在生物应用中具有价值,尤其是作为光谱纳米传感器。在这种背景下,GQDs已被用于检测次氯酸(HOCl)。虽然HOCl是一种众所周知的合成消毒剂,但它也是哺乳动物体内的髓过氧化物酶(MPO)天然产生的。这种血红素过氧化物酶还催化生成次溴酸(HOBr),一种更强效的卤化剂物质。在我们的研究中,我们比较了HOCl和HOBr与GQDs的反应活性。通过监测GQDs的荧光漂白,我们证明HOBr比HOCl更具反应活性。反应活性的增加归因于HOBr更高的亲电性。通过引入尼古丁作为氯化催化剂,进一步证实了该反应的亲电性质。苯甲醚不会抑制亲电攻击,这证实了GODs与HOBr具有高反应活性。利用酶MPO通过HO氧化Br来生成HOBr。因此,MPO的酶活性可以通过GQDs的荧光漂白来监测,并且可以评估MPO抑制剂的效率。我们应用微分函数理论(DFT)方法来支持我们的实验结果,提出了亲电攻击的过渡态。与我们的实验结果一致,与HOBr反应的能垒低于与HOCl反应的能垒。总体而言,我们的结果表明GQDs易受次卤酸的亲电攻击,并突出了生物应用的新机会。