Hackbarth Haira G, Key Thomas S, Cataldo Taren, Dillingham Ian, Yang Yuwei, Dickerson Matthew B, Pruyn Timothy L, Bedford Nicholas M
School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.
ACS Omega. 2025 Apr 7;10(15):14745-14754. doi: 10.1021/acsomega.4c09094. eCollection 2025 Apr 22.
Silicon oxycarbide (SiOC) is a versatile ceramic material with tunable microstructure and compositions that can be modulated through precursor chemistry and processing conditions. Though there are several noteworthy uses of SiOC across a range of application spaces, the difficulties in elucidating the short- to medium-range order within these materials have limited the maturation of strategies to precisely control SiC O compositions for user-tailored applications. In this contribution, we implement a range of synchrotron scattering and spectroscopy methods coupled with stochastic modeling techniques to elucidate changes in local chemistry and structure associated with the pyrolysis of a commercially available SiOC polymer precursor. Stochastic modeling approaches provide valuable insights into decoupling local Si-O and Si-C environments while confirming predominate heterogeneous phases in materials. Using pyrolysis temperatures between 250 to 800 °C results in a heterogeneous material predominately composed of SiOC and amorphous SiO domains. At 1100 °C, redistribution of Si-C pairs in the SiOC network and Si-O from the SiO domains create a more ordered SiOC phase with local cubic SiC-like ordering. In addition, residual carbon leads to a detectable carbon phases at 1100 °C that persist at higher temperatures. These efforts address the difficulties of obtaining atomic-scale insights into the local structure and nanoscale heterogeneities in SiOC, providing pathways toward establishing structure-property relationships for future materials development.
碳氧化硅(SiOC)是一种多功能陶瓷材料,其微观结构和成分可调,可通过前驱体化学和加工条件进行调控。尽管SiOC在一系列应用领域有若干值得注意的用途,但阐明这些材料中短程至中程有序结构的困难限制了精确控制SiOC成分以实现用户定制应用的策略的成熟。在本论文中,我们采用了一系列同步加速器散射和光谱方法,并结合随机建模技术,以阐明与市售SiOC聚合物前驱体热解相关的局部化学和结构变化。随机建模方法为解耦局部Si-O和Si-C环境提供了有价值的见解,同时证实了材料中主要的非均相。使用250至800°C的热解温度会产生一种主要由SiOC和非晶态SiO域组成的非均质材料。在1100°C时,SiOC网络中Si-C对的重新分布以及来自SiO域的Si-O会形成一种具有局部立方SiC样有序结构的更有序的SiOC相。此外,残余碳在1100°C时会导致可检测到的碳相,且在更高温度下仍然存在。这些工作解决了在SiOC中获得原子尺度上对局部结构和纳米尺度非均质性的见解的困难,为未来材料开发建立结构-性能关系提供了途径。