Suppr超能文献

使用电子健康记录对阿尔茨海默病及相关痴呆症进行表型分析的人工智能方法。

AI approaches for phenotyping Alzheimer's disease and related dementias using electronic health records.

作者信息

Knox Sara, Aghamoosa Stephanie, Heider Paul M, Cutty Maxwell, Wright Andrew, Scherbakov Dmitry, Hood Gabriel, Nolin Sara A, Obeid Jihad S

机构信息

Department of Health Sciences and Research College of Health Professions Medical University of South Carolina Charleston South Carolina USA.

Biomedical Informatics Center Department of Public Health Sciences College of Medicine Medical University of South Carolina Charleston South Carolina USA.

出版信息

Alzheimers Dement (N Y). 2025 Apr 24;11(2):e70089. doi: 10.1002/trc2.70089. eCollection 2025 Apr-Jun.

Abstract

INTRODUCTION

The current standard electronic (e-)phenotype for identifying patients with Alzheimer's disease and related dementias (ADRD) from medical claims data yields suboptimal diagnostic accuracy. This study leveraged artificial intelligence (AI)-based text-classification methods to improve the identification of patients with dementia due to ADRD using clinical notes from electronic health records (EHRs).

METHODS

EHR data for patients aged ≥ 64 ( = 4000) from an academic medical center were used. The cohort included 1000 patients with ADRD per the Chronic Conditions Warehouse (CCW) algorithm for ADRD (i.e., at least one ADRD International Classification of Diseases, Tenth Revision codes [ICD-10 code]) and 3000 matched controls without ADRD (i.e., no CCW codes). We trained several AI-based text-classification models, including bag-of-words models, deep learning, and large language models (LLMs), to make ADRD determinations from clinical notes. The performance of each model was evaluated against "gold standard" manual chart review.

RESULTS

A foundational LLM derived from Llama 2 demonstrated superior performance in identifying patients with ADRD (area under the curve [AUC] = 0.9534, score 0.8571) compared to both the current standard CCW algorithm (AUC = 0.8482, score 0.8323, although only the AUC was statistically significantly different) and other AI-based models. Several of the AI-based models, including convolutional neural networks, also outperformed the CCW algorithm.

DISCUSSION

These findings highlight the potential of AI-based text-classification methods to optimize the automated identification of patients with ADRD using rich EHR data. However, the success of this approach depends on the quality of clinical notes, and more work is needed to refine and validate these methods across more diverse data sets.

HIGHLIGHTS

The current e-phenotype for patients with Alzheimer's disease and related dementias (ADRD) in electronic health records has suboptimal diagnostic accuracy.The study used artificial intelligence (AI)-based text classification methods to improve the detection of patients with ADRD.AI-based models, including convolutional neural networks, outperformed the Chronic Conditions Warehouse algorithm.

摘要

引言

目前用于从医疗理赔数据中识别阿尔茨海默病及相关痴呆症(ADRD)患者的标准电子(e-)表型诊断准确性欠佳。本研究利用基于人工智能(AI)的文本分类方法,通过电子健康记录(EHR)中的临床记录来改进对ADRD所致痴呆症患者的识别。

方法

使用了来自一家学术医疗中心的≥64岁患者(n = 4000)的EHR数据。该队列包括根据ADRD慢性病仓库(CCW)算法确定的1000例ADRD患者(即至少有一个ADRD国际疾病分类第十版编码[ICD-10编码])和3000例匹配的无ADRD对照患者(即无CCW编码)。我们训练了几种基于AI的文本分类模型,包括词袋模型、深度学习和大语言模型(LLM),以根据临床记录做出ADRD诊断。将每个模型的性能与“金标准”人工病历审查进行评估。

结果

与当前标准的CCW算法(AUC = 0.8482,F1分数0.8323,尽管只有AUC有统计学显著差异)和其他基于AI的模型相比,源自Llama 2的基础LLM在识别ADRD患者方面表现更优(曲线下面积[AUC] = 0.9534,F1分数0.8571)。包括卷积神经网络在内的几种基于AI的模型也优于CCW算法。

讨论

这些发现凸显了基于AI的文本分类方法利用丰富的EHR数据优化ADRD患者自动识别的潜力。然而,这种方法的成功取决于临床记录的质量,需要开展更多工作以在更多样化的数据集上完善和验证这些方法。

要点

电子健康记录中目前用于阿尔茨海默病及相关痴呆症(ADRD)患者的e-表型诊断准确性欠佳。该研究使用基于人工智能(AI)的文本分类方法来改进对ADRD患者的检测。包括卷积神经网络在内的基于AI的模型优于慢性病仓库算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bf/12022419/dab0efbc25cc/TRC2-11-e70089-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验