Department of Family and Preventive Medicine, Division of Public Health, University of Utah Health, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA.
Department of Psychology and Alzheimer's Disease and Dementia Research Center, Utah State University, Logan, UT, 84322, USA.
BMC Med Inform Decis Mak. 2024 Oct 28;24(1):316. doi: 10.1186/s12911-024-02728-4.
Clinical notes, biomarkers, and neuroimaging have proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict gold-standard, research-based diagnoses of dementia including Alzheimer's disease (AD) and/or Alzheimer's disease related dementias (ADRD), in addition to ICD-based AD and/or ADRD diagnoses, in a well-phenotyped, population-based cohort using a machine learning approach.
Administrative healthcare data (k = 163 diagnostic features), in addition to census/vital record sociodemographic data (k = 6 features), were linked to the Cache County Study (CCS, 1995-2008).
Among successfully linked UPDB-CCS participants (n = 4206), 522 (12.4%) had incident dementia (AD alone, AD comorbid with ADRD, or ADRD alone) as per the CCS "gold standard" assessments. Random Forest models, with a 1-year prediction window, achieved the best performance with an Area Under the Curve (AUC) of 0.67. Accuracy declined for dementia subtypes: AD/ADRD (AUC = 0.65); ADRD (AUC = 0.49). Accuracy improved when using ICD-based dementia diagnoses (AUC = 0.77).
Commonly available structured clinical data (without labs, notes, or prescription information) demonstrate modest ability to predict "gold-standard" research-based AD/ADRD diagnoses, corroborated by prior research. Using ICD diagnostic codes to identify dementia as done in the majority of machine learning dementia prediction models, as compared to "gold-standard" dementia diagnoses, can result in higher accuracy, but whether these models are predicting true dementia warrants further research.
临床记录、生物标志物和神经影像学已被证明在痴呆症预测模型中具有价值。常用的结构化临床数据是否可以预测痴呆症是一个新兴的研究领域。我们旨在使用机器学习方法,在一个表型良好的基于人群的队列中,除了基于 ICD 的 AD 和/或 ADRD 诊断外,预测基于金标准的、基于研究的痴呆症(包括阿尔茨海默病(AD)和/或 AD 相关痴呆症(ADRD))的诊断。
行政医疗保健数据(k=163 个诊断特征),加上人口普查/生命记录社会人口统计学数据(k=6 个特征),与 Cache 县研究(CCS,1995-2008 年)相关联。
在成功链接 UPDB-CCS 参与者(n=4206)中,根据 CCS 的“金标准”评估,有 522 名(12.4%)患有新发痴呆症(AD 单独、AD 与 ADRD 共病或 ADRD 单独)。具有 1 年预测窗口的随机森林模型的性能最佳,曲线下面积(AUC)为 0.67。对于痴呆症亚型,准确性下降:AD/ADRD(AUC=0.65);ADRD(AUC=0.49)。当使用基于 ICD 的痴呆症诊断时,准确性提高(AUC=0.77)。
常用的结构化临床数据(无实验室、记录或处方信息)显示出适度预测“金标准”研究 AD/ADRD 诊断的能力,这与之前的研究结果一致。与“金标准”痴呆症诊断相比,使用 ICD 诊断代码来识别痴呆症,就像大多数机器学习痴呆症预测模型所做的那样,可以提高准确性,但这些模型是否在预测真正的痴呆症值得进一步研究。