Suppr超能文献

用于化学过程族设计的嵌入机器学习代理的混合整数线性规划公式

Mixed-Integer Linear Programming Formulation with Embedded Machine Learning Surrogates for the Design of Chemical Process Families.

作者信息

Stinchfield Georgia, Khalife Natali, Ammari Bashar L, Morgan Joshua C, Zamarripa Miguel, Laird Carl D

机构信息

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania 15236, United States.

出版信息

Ind Eng Chem Res. 2025 Apr 11;64(16):8299-8311. doi: 10.1021/acs.iecr.4c03913. eCollection 2025 Apr 23.

Abstract

There is a need for design strategies that can support rapid and widespread deployment of new energy systems and process technologies. In a previous work, we introduced as an alternative method to traditional and modular design approaches. In this article, we develop piecewise linear surrogates using Machine Learning (ML) models and the Optimization and Machine Learning Toolkit (OMLT) to show how process families can be designed to reduce manufacturing costs and deployment timelines. We formulate this problem as a nonlinear Generalized Disjunctive Program (GDP), which, following transformation, results in a large-scale mixed-integer nonlinear programming (MINLP) problem. This large-scale problem is intractable using traditional MINLP approaches. By using ML surrogates to predict required system costs and performance indicators, we can approximate the nonlinearities in the GDP to generate an efficient mixed-integer linear programming (MILP) formulation. We apply the ML surrogate approach to two case studies in this work. One case study involves designing a family of carbon capture systems to cover a set of different flue gas flow rates and inlet CO concentrations, while the second case study focuses on a water desalination process, where we design a family of these processes for a variety of salt concentrations and flow rates. In both of these case studies, our approach based on ML surrogates is able to find optimal solutions in reasonable computational time and yield solutions comparable to those of a previously reported approach for solving the problem.

摘要

需要设计策略来支持新能源系统和工艺技术的快速广泛部署。在之前的一项工作中,我们引入了一种替代传统模块化设计方法的方法。在本文中,我们使用机器学习(ML)模型和优化与机器学习工具包(OMLT)开发分段线性代理,以展示如何设计工艺族来降低制造成本和部署时间。我们将此问题表述为非线性广义析取规划(GDP),经过转换后会产生一个大规模混合整数非线性规划(MINLP)问题。使用传统的MINLP方法难以解决这个大规模问题。通过使用ML代理来预测所需的系统成本和性能指标,我们可以近似GDP中的非线性,以生成一个有效的混合整数线性规划(MILP)公式。在这项工作中,我们将ML代理方法应用于两个案例研究。一个案例研究涉及设计一系列碳捕获系统,以覆盖一组不同的烟气流量和入口CO浓度,而第二个案例研究专注于海水淡化过程,我们为各种盐浓度和流量设计了一系列这些过程。在这两个案例研究中,我们基于ML代理的方法能够在合理的计算时间内找到最优解,并产生与之前报道的解决该问题的方法相当的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/796a/12022974/0636199cd812/ie4c03913_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验