Nwogbaga Ifunanya, Belliveau Nathan M, Singh Amit R, Sun Daiyue, Mulenga Natasha, Theriot Julie A, Camley Brian A
bioRxiv. 2025 Apr 10:2025.04.09.647627. doi: 10.1101/2025.04.09.647627.
Cells sense and respond to electric fields, using these fields as a guidance cue in wound healing and development. This sensing is done by redistribution of charged membrane proteins on the cell's surface ("sensors") via electrophoresis and electroosmotic flow. If membrane proteins have to physically rearrange on the cell's surface, how quickly can a cell respond to an applied signal? What limits the cell's ability to respond? Are galvanotaxing cells, like chemotaxing cells, limited by stochasticity from the finite number of molecules? Here, we develop a model for the response dynamics of galvanotaxing cells and show that, for weak enough field strengths, two relevant timescales emerge: the time for the cell's sensors to rearrange, which depends on their diffusion across the cell, and the time for the cell's orientation to respond to an applied field, which may be very different. We fit this model to experimental measurements on the recently-identified sensor galvanin (TMEM154) in neutrophil-like HL-60 cells, finding that given the dynamics of a cell responding to an applied field, we can predict the dynamics of the cell after the field is turned off. This fit constrains the noise of the galvanotaxis process, demonstrating that HL-60 is not limited by the stochasticity of finite sensor number. Our model also allows us to explain the effect of media viscosity on cell dynamics, and predict how cells respond to pulsed DC fields. These results place constraints on the ability to guide cells with pulsed fields, predicting that a field on half of the time is no better than a field that is always on with half the magnitude.
细胞能够感知电场并对其做出反应,在伤口愈合和发育过程中利用这些电场作为引导线索。这种感知是通过细胞表面带电荷的膜蛋白(“传感器”)通过电泳和电渗流重新分布来实现的。如果膜蛋白必须在细胞表面进行物理重排,那么细胞对施加信号的响应速度有多快?是什么限制了细胞的响应能力?趋电细胞是否像趋化细胞一样,受到有限数量分子的随机性限制?在这里,我们建立了一个趋电细胞响应动力学模型,并表明,对于足够弱的场强,会出现两个相关的时间尺度:细胞传感器重新排列的时间,这取决于它们在细胞上的扩散,以及细胞方向对施加场做出响应的时间,这可能非常不同。我们将这个模型与最近在嗜中性粒细胞样HL-60细胞中鉴定出的传感器galvanin(TMEM154)的实验测量结果进行拟合,发现考虑到细胞对施加场的响应动力学,我们可以预测场关闭后细胞的动力学。这种拟合限制了趋电过程的噪声,表明HL-60不受有限传感器数量的随机性限制。我们的模型还使我们能够解释培养基粘度对细胞动力学的影响,并预测细胞对脉冲直流电场的响应。这些结果对用脉冲场引导细胞的能力提出了限制,预测一半时间开启的场并不比强度减半但一直开启的场更好。