Yao Heng Kang, Mazza Frank, Prevot Thomas D, Sibille Etienne, Hay Etay
Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.
Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada.
iScience. 2025 Mar 3;28(5):112136. doi: 10.1016/j.isci.2025.112136. eCollection 2025 May 16.
Major depressive disorder (depression) is associated with altered dendritic structure and function of cortical pyramidal neurons, due to decreased inhibition from somatostatin (SST) interneurons and loss of spines and associated synapses, as indicated in postmortem human studies. Dendrites mediate signal processing through synaptic integration and nonlinear properties including backpropagating action potentials and dendritic Na spikes that enhance the neuron's computational power. However, it is currently unclear how depression-related dendritic changes impact signal integration. Here, we integrated human neuronal data of active dendritic properties and spine loss in depression into detailed computational models of human cortical microcircuits. We show that spine loss dampens signal response, worsening signal detection impairment than due to reduced SST interneuron inhibition alone. Furthermore, altered intrinsic properties due to spine loss abolished nonlinear dendritic signal integration and impaired recurrent microcircuit activity. Our study mechanistically links cellular changes in depression to impaired dendritic processing in human cortical microcircuits.
重度抑郁症与皮质锥体细胞的树突结构和功能改变有关,这是由于生长抑素(SST)中间神经元的抑制作用降低以及树突棘和相关突触的丧失,尸检人类研究表明了这一点。树突通过突触整合和非线性特性(包括反向传播动作电位和增强神经元计算能力的树突钠峰)来介导信号处理。然而,目前尚不清楚与抑郁症相关的树突变化如何影响信号整合。在这里,我们将抑郁症中活跃树突特性和树突棘丧失的人类神经元数据整合到人类皮质微电路的详细计算模型中。我们表明,树突棘丧失会减弱信号反应,比单独由于SST中间神经元抑制减少导致的信号检测损伤更严重。此外,由于树突棘丧失而改变的内在特性消除了非线性树突信号整合,并损害了递归微电路活动。我们的研究从机制上将抑郁症中的细胞变化与人类皮质微电路中受损的树突处理联系起来。