Komsa-Penkova Regina, Alexandrova-Watanabe Anika, Todinova Svetla, Ivanova Violina, Stoycheva Svetoslava, Temnishki Petar, Dimitrov Borislav, Dimitrov Dobromir, Tonchev Pencho, Georgieva Galya, Kukov Aleksandar, Ivanova Izabela, Tiankov Tihomir, Abadjieva Emilia, Strijkova Velichka, Altankov George
Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria.
Leonardo da Vinci Center of Competence in Personalized Medicine, 3D and Telemedicine, Robotic and Minimally Invasive Surgery, 1, "St. Kl. Ochridski" Str., 5800 Pleven, Bulgaria.
Polymers (Basel). 2025 Mar 20;17(6):821. doi: 10.3390/polym17060821.
Understanding mesenchymal stem cell (MSC) behavior on glycated collagen is crucial for advancing regenerative medicine and understanding pathological mechanisms in diseases such as diabetes, cancer, and aging. While previous research has demonstrated reduced MSC interaction with glycated collagen under static conditions due to disrupted integrin signaling, these studies did not accurately replicate the dynamic mechanical environment that MSCs encounter in vivo. Here we present a comprehensive investigation comparing adipose-derived MSC (ADMSC) behavior under both dynamic flow conditions and static adhesion, revealing unexpected temporal dynamics and challenging existing paradigms of cell-matrix interactions. Using a sophisticated microfluidic BioFlux system combined with traditional static adhesion assays, we examined ADMSC interactions with native collagen for 1-day glycated (GL1), and 5-day glycated (GL5) samples. Under flow conditions, MSCs demonstrated remarkably rapid attachment-within 3-5 min-contrasting sharply with the classical 2 h static incubation protocol. This rapid adhesion was particularly enhanced on 5-day glycated collagen, though subsequent testing revealed significantly weaker adhesion strength under shear stress compared to native collagen. Static conditions also showed a distinct pattern: increased ADMSC adhesion to glycated samples within the first 30 min, followed by a progressive decrease in adhesion and compromised cell spreading over longer periods. Atomic force microscopy (AFM) analysis revealed significant changes in collagen surface properties upon glycation. These included a substantial reduction in the negative surface charge (from ~800 to 600 mV), altered surface roughness patterns (Rrms varying from 3.0 ± 0.4 nm in native collagen to 7.70 ± 0.6 nm in GL5), and decreased elasticity (Young's modulus dropping from 34.8 ± 5.4 MPa to 2.07 ± 0.3 MPa in GL5). These physical alterations appear to facilitate rapid initial cell attachment while potentially compromising long-term stable adhesion through traditional integrin-mediated mechanisms. This study provides novel insights into the complex dynamics of MSC adhesion to glycated collagen, revealing previously unknown temporal patterns and challenging existing models of cell-matrix interactions. The findings suggest a need for revised approaches in tissue engineering and regenerative medicine, particularly in conditions where glycated collagen is prevalent.
了解间充质干细胞(MSC)在糖化胶原蛋白上的行为对于推进再生医学以及理解糖尿病、癌症和衰老等疾病的病理机制至关重要。虽然先前的研究表明,在静态条件下,由于整合素信号传导中断,MSC与糖化胶原蛋白的相互作用减少,但这些研究并未准确复制MSC在体内遇到的动态力学环境。在此,我们进行了一项全面研究,比较脂肪来源的MSC(ADMSC)在动态流动条件和静态黏附条件下的行为,揭示了意想不到的时间动态,并对现有的细胞 - 基质相互作用范式提出了挑战。我们使用先进的微流控BioFlux系统结合传统的静态黏附试验,研究了ADMSC与天然胶原蛋白、1天糖化(GL1)和5天糖化(GL5)样本的相互作用。在流动条件下,MSC在3 - 5分钟内就表现出显著快速的附着,这与传统的2小时静态孵育方案形成鲜明对比。这种快速黏附在5天糖化胶原蛋白上尤为增强,不过后续测试显示,与天然胶原蛋白相比,在剪切应力下其黏附强度明显较弱。静态条件下也呈现出不同的模式:在最初30分钟内,ADMSC对糖化样本的黏附增加,随后黏附逐渐减少,且在较长时间内细胞铺展受损。原子力显微镜(AFM)分析显示,糖化后胶原蛋白表面性质发生了显著变化。这些变化包括表面负电荷大幅减少(从约800 mV降至600 mV)、表面粗糙度模式改变(均方根粗糙度Rrms从天然胶原蛋白的3.0±0.4 nm变为GL5的7.70±0.6 nm)以及弹性降低(杨氏模量从GL5的34.8±5.4 MPa降至2.07±0.3 MPa)。这些物理改变似乎有助于细胞快速初始附着,但可能通过传统的整合素介导机制损害长期稳定黏附。这项研究为MSC与糖化胶原蛋白黏附的复杂动态提供了新的见解,揭示了以前未知的时间模式,并对现有的细胞 - 基质相互作用模型提出了挑战。研究结果表明,在组织工程和再生医学中需要修订方法,特别是在糖化胶原蛋白普遍存在的情况下。