Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
J Mater Chem B. 2020 Feb 26;8(8):1649-1659. doi: 10.1039/c9tb02309g.
Cell-biomaterial interactions are primarily governed by cell adhesion, which arises from the binding of cellular integrins to the extracellular matrix (ECM). Integrins drive the assembly of focal contacts that serve as mechanotransducers and signaling nexuses for stem cells, for example integrin α4β1 plays pivotal roles in regulating mesenchymal stem cell (MSC) homing, adhesion, migration and differentiation. The strategy to control the integrin-mediated cell adhesion to bioinspired, ECM-mimicking materials is essential to regulate cell functions and tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we discovered that LLP2A was a high-affinity peptidomimetic ligand (IC50 = 2 pM) against integrin α4β1. In this study, we identified that LLP2A had a strong binding to human early gestation chorionic villi-derived MSCs (CV-MSCs) via integrin α4β1. To improve CV-MSC seeding, expansion and delivery for regenerative applications, we constructed artificial scaffolds simulating the structure of the native ECM by immobilizing LLP2A onto the scaffold surface as cell adhesion sites. LLP2A modification significantly enhanced CV-MSC adhesion, spreading and viability on the polymeric scaffolds via regulating signaling pathways including phosphorylation of focal adhesion kinase (FAK), and AKT, NF-kB and Caspase 9. In addition, we also demonstrated that LLP2A had strong binding to MSCs of other sources, such as bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs). Therefore, LLP2A and its derivatives not only hold great promise for improving CV-MSC-mediated treatment of fetal diseases, but they can also be widely applied to functionalize various biological and medical materials, which are in need of MSC recruitment, enrichment and survival, for regenerative medicine applications.
细胞-生物材料相互作用主要受细胞黏附控制,细胞黏附源于细胞整合素与细胞外基质(ECM)的结合。整合素驱动着焦点接触的组装,这些焦点接触充当着干细胞的机械转导器和信号枢纽,例如整合素α4β1 在调节间充质干细胞(MSC)归巢、黏附、迁移和分化方面发挥着关键作用。控制整合素介导的细胞黏附到仿生 ECM 模拟材料的策略对于调节细胞功能和组织再生至关重要。此前,我们使用单珠一单化合物(OBOC)组合技术发现 LLP2A 是一种针对整合素α4β1 的高亲和力肽模拟配体(IC50=2pM)。在这项研究中,我们确定 LLP2A 通过整合素α4β1 与人类早期妊娠绒毛膜绒毛衍生的间充质干细胞(CV-MSCs)具有很强的结合能力。为了改善 CV-MSC 的播种、扩增和再生应用中的递送,我们通过将 LLP2A 固定在支架表面上作为细胞黏附位点来构建模拟天然 ECM 结构的人工支架。LLP2A 修饰通过调节包括粘着斑激酶(FAK)、AKT、NF-κB 和 Caspase 9 的磷酸化在内的信号通路,显著增强了 CV-MSC 在聚合物支架上的黏附、铺展和活力。此外,我们还证明 LLP2A 与其他来源的 MSC 具有很强的结合能力,例如骨髓间充质干细胞(BM-MSCs)和脂肪组织间充质干细胞(AT-MSCs)。因此,LLP2A 及其衍生物不仅有望改善 CV-MSC 介导的胎儿疾病治疗,而且还可以广泛应用于需要 MSC 募集、富集和存活的各种生物和医学材料的功能化,以用于再生医学应用。