Suppr超能文献

基于农业4.0的室内可控环境下菠菜(L.)生长模型

Spinach ( L.) Growth Model in Indoor Controlled Environment Using Agriculture 4.0.

作者信息

Isaza Cesar, Aleman-Trejo Angel Mario, Ramirez-Gutierrez Cristian Felipe, Zavala de Paz Jonny Paul, Rizzo-Sierra Jose Amilcar, Anaya Karina

机构信息

Cuerpo Académico de Tecnologías de la Información y Comunicación Aplicada, Universidad Politécnica de Querétaro, Carretera Estatal 420 SN, El Marqués 76240, Querétaro, Mexico.

出版信息

Sensors (Basel). 2025 Mar 8;25(6):1684. doi: 10.3390/s25061684.

Abstract

Global trends in health, climate, and population growth drive the demand for high-nutrient plants like spinach, which thrive under controlled conditions with minimal resources. Despite technological advances in agriculture, current systems often rely on traditional methods and need robust computational models for precise plant growth forecasting. Optimizing vegetable growth using advanced agricultural and computational techniques, addressing challenges in food security, and obtaining efficient resource utilization within urban agriculture systems are open problems for humanity. Considering the above, this paper presents an enclosed agriculture system for growth and modeling spinach of the Viroflay ( L.) species. It encompasses a methodology combining data science, machine learning, and mathematical modeling. The growth system was built using LED lighting, automated irrigation, temperature control with fans, and sensors to monitor environmental variables. Data were collected over 60 days, recording temperature, humidity, substrate moisture, and light spectra information. The experimental results demonstrate the effectiveness of polynomial regression models in predicting spinach growth patterns. The best-fitting polynomial models for leaf length achieved a minimum Mean Squared Error (MSE) of 0.158, while the highest MSE observed was 1.2153, highlighting variability across different leaf pairs. Leaf width models exhibited improved predictability, with MSE values ranging from 0.0741 to 0.822. Similarly, leaf stem length models showed high accuracy, with the lowest MSE recorded at 0.0312 and the highest at 0.3907.

摘要

健康、气候和人口增长的全球趋势推动了对菠菜等高营养植物的需求,这类植物在资源最少的可控条件下生长良好。尽管农业技术取得了进步,但当前的系统往往依赖传统方法,并且需要强大的计算模型来进行精确的植物生长预测。利用先进的农业和计算技术优化蔬菜生长、解决粮食安全挑战以及在城市农业系统中实现高效资源利用,是人类面临的开放性问题。考虑到上述情况,本文提出了一种用于种植和模拟维罗弗莱(L.)品种菠菜的封闭式农业系统。它涵盖了一种将数据科学、机器学习和数学建模相结合的方法。该生长系统利用LED照明、自动灌溉、风扇控温以及传感器来监测环境变量构建而成。在60天内收集了数据,记录了温度、湿度、基质湿度和光谱信息。实验结果证明了多项式回归模型在预测菠菜生长模式方面的有效性。叶片长度的最佳拟合多项式模型的最小均方误差(MSE)为0.158,而观察到的最高MSE为1.2153,突出了不同叶片对之间的变异性。叶片宽度模型表现出更好的可预测性,MSE值在0.0741至0.822之间。同样,叶柄长度模型显示出高精度,记录的最低MSE为0.0312,最高为0.3907。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7b6/11944551/5d1f45e47aa8/sensors-25-01684-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验