Suppr超能文献

使用双金属氢氧化物和还原氧化石墨烯纳米复合材料对香兰素进行灵敏的电化学测定。

Sensitive Electrochemical Determination of Vanillin Using a Bimetallic Hydroxide and Reduced Graphene Oxide Nanocomposite.

作者信息

Hira Shamim Ahmed, Quintal Jonathan, Chen Aicheng

机构信息

Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

出版信息

Sensors (Basel). 2025 Mar 9;25(6):1694. doi: 10.3390/s25061694.

Abstract

Vanillin (VAN) is an organic compound which not only functions as a flavoring and fragrance enhancer in some foods but also has antioxidant, anti-inflammatory, anti-cancer, and anti-depressant effects. However, the excessive use of VAN can be associated with negative side effects on human health. As a result, it is crucial to find a reliable method for the rapid determination of VAN to enhance food safety. Herein, we developed a sensor using Ni and Co bimetallic hydroxide and reduced graphene oxide nanostructure (NiCo(OH).rGO). Our prepared material was characterized using various physico-chemical techniques. The electrocatalytic efficiency of the NiCo(OH).rGO-modified glassy carbon electrode was investigated using cyclic and square wave voltammetry. The developed sensor showed a limit of detection of 6.1 nM and a linear range of 5-140 nM. The synergistic effect of NiCo(OH) and rGO improved the active sites and enhanced its catalytic efficiency. The practical applicability of the prepared sensor was investigated for the determination of VAN in food samples such as biscuits and chocolates, showing promise in practical applications.

摘要

香草醛(VAN)是一种有机化合物,它不仅在某些食品中用作调味和增香剂,还具有抗氧化、抗炎、抗癌和抗抑郁作用。然而,过量使用VAN可能会对人体健康产生负面影响。因此,找到一种可靠的快速测定VAN的方法以提高食品安全至关重要。在此,我们开发了一种使用镍和钴双金属氢氧化物与还原氧化石墨烯纳米结构(NiCo(OH).rGO)的传感器。我们制备的材料使用各种物理化学技术进行了表征。使用循环伏安法和方波伏安法研究了NiCo(OH).rGO修饰玻碳电极的电催化效率。所开发的传感器检测限为6.1 nM,线性范围为5 - 140 nM。NiCo(OH)和rGO的协同作用增加了活性位点并提高了其催化效率。研究了所制备传感器在饼干和巧克力等食品样品中测定VAN的实际适用性,在实际应用中显示出前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5afe/11945825/e11969529eb9/sensors-25-01694-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验