Suppr超能文献

HPRT-DETR:一种用于智能驾驶车辆的高精度实时目标检测算法。

HPRT-DETR: A High-Precision Real-Time Object Detection Algorithm for Intelligent Driving Vehicles.

作者信息

Song Xiaona, Fan Bin, Liu Haichao, Wang Lijun, Niu Jinxing

机构信息

School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.

出版信息

Sensors (Basel). 2025 Mar 13;25(6):1778. doi: 10.3390/s25061778.

Abstract

Object detection is essential for the perception systems of intelligent driving vehicles. RT-DETR has emerged as a prominent model. However, its direct application in intelligent driving vehicles still faces issues with the misdetection of occluded or small targets. To address these challenges, we propose a High-Precision Real-Time object detection algorithm (HPRT-DETR). We designed a Basic-iRMB-CGA (BIC) Block for a backbone network that efficiently extracts features and reduces the model's parameters. We thus propose a Deformable Attention-based Intra-scale Feature Interaction (DAIFI) module by combining the Deformable Attention mechanism with the Intra-Scale Feature Interaction module. This enables the model to capture rich semantic features and enhance object detection accuracy in occlusion. The Local Feature Extraction Fusion (LFEF) block was created by integrating the local feature extraction module with the CNN-based Cross-scale Feature Fusion (CCFF) module. This integration expands the model's receptive field and enhances feature extraction without adding learnable parameters or complex computations, effectively minimizing missed detections of small targets. Experiments on the KITTI dataset show that, compared to RT-DETR, HPRT-DETR improves mAP50 and FPS by 1.98% and 15.25%, respectively. Additionally, its generalization ability is assessed on the SODA 10M dataset, where HPRT-DETR outperforms RT-DETR in most evaluation metrics, confirming the model's effectiveness.

摘要

目标检测对于智能驾驶车辆的感知系统至关重要。RT-DETR已成为一个突出的模型。然而,其在智能驾驶车辆中的直接应用仍面临遮挡或小目标误检测的问题。为应对这些挑战,我们提出了一种高精度实时目标检测算法(HPRT-DETR)。我们为骨干网络设计了一个基本-iRMB-CGA(BIC)模块,该模块能有效提取特征并减少模型参数。因此,我们通过将可变形注意力机制与尺度内特征交互模块相结合,提出了一种基于可变形注意力的尺度内特征交互(DAIFI)模块。这使模型能够捕获丰富的语义特征,并提高遮挡情况下的目标检测精度。通过将局部特征提取模块与基于卷积神经网络的跨尺度特征融合(CCFF)模块集成,创建了局部特征提取融合(LFEF)模块。这种集成扩展了模型的感受野,增强了特征提取能力,且无需添加可学习参数或复杂计算,有效减少了小目标的漏检。在KITTI数据集上的实验表明,与RT-DETR相比,HPRT-DETR的mAP50和FPS分别提高了1.98%和15.25%。此外,在SODA 10M数据集上评估了其泛化能力,在大多数评估指标上HPRT-DETR均优于RT-DETR,证实了该模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验