Suppr超能文献

FSH-DETR:一种基于可变形检测变压器(DETR)的高效端到端火灾烟雾和人体检测方法。

FSH-DETR: An Efficient End-to-End Fire Smoke and Human Detection Based on a Deformable DEtection TRansformer (DETR).

作者信息

Liang Tianyu, Zeng Guigen

机构信息

School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

出版信息

Sensors (Basel). 2024 Jun 23;24(13):4077. doi: 10.3390/s24134077.

Abstract

Fire is a significant security threat that can lead to casualties, property damage, and environmental damage. Despite the availability of object-detection algorithms, challenges persist in detecting fires, smoke, and humans. These challenges include poor performance in detecting small fires and smoke, as well as a high computational cost, which limits deployments. In this paper, we propose an end-to-end object detector for fire, smoke, and human detection based on Deformable DETR (DEtection TRansformer) called FSH-DETR. To effectively process multi-scale fire and smoke features, we propose a novel Mixed Encoder, which integrates SSFI (Separate Single-scale Feature Interaction Module) and CCFM (CNN-based Cross-scale Feature Fusion Module) for multi-scale fire, smoke, and human feature fusion. Furthermore, we enhance the convergence speed of FSH-DETR by incorporating a bounding box loss function called PIoUv2 (Powerful Intersection of Union), which improves the precision of fire, smoke, and human detection. Extensive experiments on the public dataset demonstrate that the proposed method surpasses state-of-the-art methods in terms of the mAP (mean Average Precision), with mAP and mAP50 reaching 66.7% and 84.2%, respectively.

摘要

火灾是一种重大的安全威胁,可能导致人员伤亡、财产损失和环境破坏。尽管有目标检测算法可用,但在检测火灾、烟雾和人员方面仍存在挑战。这些挑战包括在检测小火和烟雾方面性能不佳,以及计算成本高,这限制了其部署。在本文中,我们提出了一种基于可变形DETR(检测变压器)的用于火灾、烟雾和人员检测的端到端目标检测器,称为FSH-DETR。为了有效处理多尺度火灾和烟雾特征,我们提出了一种新颖的混合编码器,它集成了SSFI(单独单尺度特征交互模块)和CCFM(基于卷积神经网络的跨尺度特征融合模块)用于多尺度火灾、烟雾和人员特征融合。此外,我们通过纳入一种称为PIoUv2(强大交并比)的边界框损失函数来提高FSH-DETR的收敛速度,这提高了火灾、烟雾和人员检测的精度。在公共数据集上的大量实验表明,所提出的方法在mAP(平均精度均值)方面超过了现有方法,mAP和mAP50分别达到66.7%和84.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a809/11244274/1fcbe76b3064/sensors-24-04077-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验