Jeong Wonseok, Lee Chanho, Lee Namyeong, Hong Seungwoo, Kang Donghyun, An Donghyeok
Department of Computer Engineering, Changwon National University, Changwon 51140, Republic of Korea.
Department of Future Digital Solutions of Volvo Construction Equipment, Changwon 51706, Republic of Korea.
Sensors (Basel). 2025 Mar 14;25(6):1808. doi: 10.3390/s25061808.
This paper aims to address sensor-related challenges in simultaneous localization and mapping (SLAM) systems, specifically within the open-source Google Cartographer project, which implements graph-based SLAM. The primary problem tackled is the adaptability and functionality of SLAM systems in diverse robotic applications. To solve this, we developed a novel SLAM framework that integrates five additional functionalities into the existing Google Cartographer and Robot Operating System (ROS). These innovations include an inertial data generation system and a sensor data preprocessing system to mitigate issues arising from various sensor configurations. Additionally, the framework enhances system utility through real-time 3D topographic mapping, multi-node SLAM capabilities, and elliptical sensor data filtering. The average execution times for sensor data preprocessing and virtual inertial data generation are 0.55 s and 0.15 milliseconds, indicating a low computational overhead. Elliptical filtering has nearly the same execution speed as the existing filtering scheme.
本文旨在解决同步定位与地图构建(SLAM)系统中与传感器相关的挑战,特别是在开源的谷歌Cartographer项目中,该项目实现了基于图的SLAM。所解决的主要问题是SLAM系统在各种机器人应用中的适应性和功能。为了解决这个问题,我们开发了一种新颖的SLAM框架,该框架将五个额外的功能集成到现有的谷歌Cartographer和机器人操作系统(ROS)中。这些创新包括一个惯性数据生成系统和一个传感器数据预处理系统,以减轻各种传感器配置引起的问题。此外,该框架通过实时3D地形映射、多节点SLAM功能和椭圆传感器数据过滤来提高系统实用性。传感器数据预处理和虚拟惯性数据生成的平均执行时间分别为0.55秒和0.15毫秒,表明计算开销较低。椭圆滤波的执行速度与现有滤波方案几乎相同。