Suppr超能文献

水下同时定位与地图构建中传感器融合的进展:增强导航与环境感知综述

Advancements in Sensor Fusion for Underwater SLAM: A Review on Enhanced Navigation and Environmental Perception.

作者信息

Merveille Fomekong Fomekong Rachel, Jia Baozhu, Xu Zhizun, Fred Bissih

机构信息

School of Naval Architecture and Maritime, Guangdong Ocean University, Zhanjiang 524000, China.

School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

出版信息

Sensors (Basel). 2024 Nov 24;24(23):7490. doi: 10.3390/s24237490.

Abstract

Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting the amalgamation of proprioceptive and exteroceptive sensors to improve UUV navigational accuracy and system resilience. Essential sensor applications, including inertial measurement units (IMUs), Doppler velocity logs (DVLs), cameras, sonar, and LiDAR (light detection and ranging), are examined for their contributions to navigation and perception. Fusion methodologies, such as Kalman filters, particle filters, and graph-based SLAM, are evaluated for their benefits, limitations, and computational demands. Additionally, innovative technologies like quantum sensors and AI-driven filtering techniques are examined for their potential to enhance SLAM precision and adaptability. Case studies demonstrate practical applications, analyzing the compromises between accuracy, computational requirements, and adaptability to environmental changes. This paper proceeds to emphasize future directions, stressing the need for advanced filtering and machine learning to address sensor drift, noise, and environmental unpredictability, hence improving autonomous underwater navigation through reliable sensor fusion.

摘要

由于水下环境的复杂性,水下同步定位与地图构建(SLAM)面临重大挑战,其特点是能见度有限、条件多变且全球定位系统(GPS)可用性受限。本研究对水下SLAM中的传感器融合技术进行了全面分析,强调了本体感受和外感受传感器的融合,以提高水下无人航行器(UUV)的导航精度和系统弹性。研究了包括惯性测量单元(IMU)、多普勒速度计(DVL)、相机、声纳和激光雷达(光探测和测距)在内的关键传感器应用对导航和感知的贡献。评估了卡尔曼滤波器、粒子滤波器和基于图的SLAM等融合方法的优点、局限性和计算需求。此外,还研究了量子传感器和人工智能驱动的滤波技术等创新技术提高SLAM精度和适应性的潜力。案例研究展示了实际应用,分析了精度、计算需求和对环境变化的适应性之间的权衡。本文接着强调了未来的方向,强调需要先进的滤波和机器学习来解决传感器漂移、噪声和环境不可预测性问题,从而通过可靠的传感器融合改善自主水下导航。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验