Suppr超能文献

YOLOv8-TF:用于处理类别不平衡的水下鱼类物种识别的Transformer增强YOLOv8

YOLOv8-TF: Transformer-Enhanced YOLOv8 for Underwater Fish Species Recognition with Class Imbalance Handling.

作者信息

Shah Chiranjibi, Nabi M M, Alaba Simegnew Yihunie, Ebu Iffat Ara, Prior Jack, Campbell Matthew D, Caillouet Ryan, Grossi Matthew D, Rowell Timothy, Wallace Farron, Ball John E, Moorhead Robert

机构信息

Northern Gulf Institute, Mississippi State University, Starkville, MS 39759, USA.

The School of Engineering and Applied Sciences, Western Kentucky University, Bowling Green, KY 42101, USA.

出版信息

Sensors (Basel). 2025 Mar 16;25(6):1846. doi: 10.3390/s25061846.

Abstract

In video-based fish surveys, species recognition plays a vital role in stock assessments, ecosystem analysis, production management, and protection of endangered species. However, implementing fish species detection algorithms in underwater environments presents significant challenges due to factors such as varying lighting conditions, water turbidity, and the diverse appearances of fish species. In this work, a transformer-enhanced YOLOv8 (YOLOv8-TF) is proposed for underwater fish species recognition. The YOLOv8-TF enhances the performance of YOLOv8 by adjusting depth scales, incorporating a transformer block into the backbone and neck, and introducing a class-aware loss function to address class imbalance in the dataset. The class-aware loss considers the count of instances within each species and assigns a higher weight to species with fewer instances. This approach enables fish species recognition through object detection, encompassing the classification of each fish species and localization to estimate their position and size within an image. Experiments were conducted using the 2021 Southeast Area Monitoring and Assessment Program (SEAMAPD21) dataset, a detailed and extensive reef fish dataset from the Gulf of Mexico. The experimental results on SEAMAPD21 demonstrate that the YOLOv8-TF model, with a mean Average Precision (mAP) of 87.9% and mAP of 61.2%, achieves better detection results for underwater fish species recognition compared to state-of-the-art YOLO models. Additionally, experimental results on the publicly available datasets, such as Pascal VOC and MS COCO datasets demonstrate that the model outperforms existing approaches.

摘要

在基于视频的鱼类调查中,物种识别在种群评估、生态系统分析、生产管理和濒危物种保护中起着至关重要的作用。然而,由于光照条件变化、水体浑浊度以及鱼类物种外观多样等因素,在水下环境中实施鱼类物种检测算法面临重大挑战。在这项工作中,提出了一种变压器增强的YOLOv8(YOLOv8-TF)用于水下鱼类物种识别。YOLOv8-TF通过调整深度尺度、在主干和颈部引入变压器模块以及引入类感知损失函数来解决数据集中的类不平衡问题,从而提高了YOLOv8的性能。类感知损失考虑每个物种内实例的数量,并为实例较少的物种分配更高的权重。这种方法通过目标检测实现鱼类物种识别,包括对每个鱼类物种的分类以及定位,以估计它们在图像中的位置和大小。使用2021年东南地区监测与评估计划(SEAMAPD21)数据集进行了实验,该数据集是来自墨西哥湾的一个详细且广泛的珊瑚礁鱼类数据集。在SEAMAPD21上的实验结果表明,YOLOv8-TF模型的平均精度均值(mAP)为87.9%,mAP为61.2%,与最先进的YOLO模型相比,在水下鱼类物种识别方面取得了更好的检测结果。此外,在公开可用数据集(如Pascal VOC和MS COCO数据集)上的实验结果表明,该模型优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4635/11946109/84eb370df31b/sensors-25-01846-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验