Suppr超能文献

机器学习在水产养殖中用于人工测量水质预测。

Machine learning for manually-measured water quality prediction in fish farming.

机构信息

Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota, Colombia.

Department of Systems Engineering, Corporación Universitaria del Huila, Neiva, Colombia.

出版信息

PLoS One. 2021 Aug 18;16(8):e0256380. doi: 10.1371/journal.pone.0256380. eCollection 2021.

Abstract

Monitoring variables such as dissolved oxygen, pH, and pond temperature is a key aspect of high-quality fish farming. Machine learning (ML) techniques have been proposed to model the dynamics of such variables to improve the fish farmer's decision-making. Most of the research on ML in aquaculture has focused on scenarios where devices for real-time data acquisition, storage, and remote monitoring are available, making it easy to develop accurate ML techniques. However, fish farmers do not necessarily have access to such devices. Many of them prefer to use equipment to manually measure these variables limiting the amount of available data to process. In this work, we study the use of random forests, multivariate linear regression, and artificial neural networks in scenarios with limited amount of measurements to analyze data from water-quality variables that are commonly measured in fish farming. We propose a methodology to build models in two scenarios: i) estimation of unobserved variables based on the observed ones, and ii) forecasting when a low amount of data is available for training. We show that random forests can be used to forecast dissolved oxygen, pond temperature, pH, ammonia, and ammonium when the water pond variables are measured only twice per day. Moreover, we showed that these prediction models can be implemented on a mobile-based information system and run in an average smartphone that fish farmers can afford.

摘要

监测溶解氧、pH 值和池塘温度等变量是高质量水产养殖的关键方面。已经提出了机器学习 (ML) 技术来模拟这些变量的动态,以提高水产养殖者的决策能力。水产养殖中关于 ML 的大多数研究都集中在可以实时获取、存储和远程监控数据的设备可用的场景中,从而可以轻松开发准确的 ML 技术。然而,水产养殖者并不一定能够获得这些设备。他们中的许多人更喜欢使用设备手动测量这些变量,从而限制了可用于处理的数据量。在这项工作中,我们研究了在可用测量数据量有限的情况下使用随机森林、多元线性回归和人工神经网络来分析水产养殖中常用的水质变量数据。我们提出了一种在两种情况下构建模型的方法:i)基于观测变量估计未观测变量,ii)当可用训练数据较少时进行预测。我们表明,当每天仅测量两次池塘水变量时,随机森林可以用于预测溶解氧、池塘温度、pH 值、氨和铵。此外,我们还表明,这些预测模型可以在基于移动的信息系统上实现,并在水产养殖者能够负担得起的普通智能手机上运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ea/8372934/4c12cfdcaeaa/pone.0256380.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验