Guo Changhai, Guo Jia, Song Wei, Peng Shaomin, Sun Ming, Xing Guichuan, Yu Lin
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China.
Angew Chem Int Ed Engl. 2025 Apr 28:e202506436. doi: 10.1002/anie.202506436.
Halide perovskites hold promise for solar-driven photocatalysis in fuel production owing to their superior light absorption and carrier diffusion. However, precise control and understanding of interfacial charge separation dynamics in their heterostructures remain challenging. Using formamidinium lead bromide/molybdenum disulfide (FAPbBr/MoS) as a model, we engineered Pb-rich, Pb-neutral, and Pb-deficient surfaces via precursor stoichiometry tuning, modulating interface coupling through Pb─S bonds. High-density atomic bridging in Pb-rich interfaces boosts photogenerated charge separation efficiency from 29% to 63%, yielding a 98-fold hydrogen production increase and record 8.69% solar-to-hydrogen efficiency. Theoretical and experimental results demonstrate that the long carrier diffusion length and high photogenerated charge density of perovskites create a steep charge density gradient at the interface. This gradient directly induces a nonequilibrium internal electric field, which governs the charge transport dynamics. This work demonstrates the feasibility of sophisticated heterointerface tailoring and advances the understanding of the driving forces behind interfacial charge separation for perovskite photocatalysts.
卤化物钙钛矿因其优异的光吸收和载流子扩散性能,在太阳能驱动的光催化燃料生产中具有广阔前景。然而,精确控制和理解其异质结构中的界面电荷分离动力学仍然具有挑战性。我们以甲脒溴化铅/二硫化钼(FAPbBr/MoS)为模型,通过前驱体化学计量比调控,构建了富铅、铅中性和贫铅表面,通过Pb─S键调节界面耦合。富铅界面中的高密度原子桥接将光生电荷分离效率从29%提高到63%,产氢量增加了98倍,太阳能制氢效率达到创纪录的8.69%。理论和实验结果表明,钙钛矿的长载流子扩散长度和高光生电荷密度在界面处形成了陡峭的电荷密度梯度。这种梯度直接诱导了一个非平衡内部电场,该电场控制着电荷传输动力学。这项工作证明了精细异质界面剪裁的可行性,并加深了对钙钛矿光催化剂界面电荷分离背后驱动力的理解。