Kumari Anumita, Smith Jason, Cho Jonathan, Liu Haitao
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Department of Chemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.
Langmuir. 2025 May 13;41(18):11367-11373. doi: 10.1021/acs.langmuir.5c00048. Epub 2025 Apr 28.
We report the deposition of DNA nanostructures on self-assembled monolayers (SAMs), focusing on the stability of DNA nanostructures on both hydrophilic and hydrophobic SAMs. Our study reveals distinct outcomes based on the nature of the SAMs. DNA nanostructures maintain structural integrity on hydrophilic SAMs, whereas they experience deformation on the most hydrophobic SAMs. Interestingly, the stability of DNA nanostructures is also sensitive to postdeposition washing procedures. The observations shed light on the intricate interplay between the wettability of SAMs and the structural stability of the DNA nanostructures. An empirical trend emerged where increased hydrophobicity is associated with a more severe deformation of DNA nanostructures. This deformation is hypothesized to arise from disrupted hydrogen bonding within DNA nanostructures and is exacerbated by interfacial tension during the drying process. Our study also highlights the potential role of π-π stacking interactions between the DNA bases and the SAMs in stabilizing the DNA nanostructures. Our work expands the type of substrates that can be used for applications of DNA nanotechnology and highlights the need for a comprehensive understanding of the interactions between DNA nanostructures with different surfaces.
我们报道了DNA纳米结构在自组装单分子层(SAMs)上的沉积情况,重点关注DNA纳米结构在亲水性和疏水性SAMs上的稳定性。我们的研究揭示了基于SAMs性质的不同结果。DNA纳米结构在亲水性SAMs上保持结构完整性,而在疏水性最强的SAMs上会发生变形。有趣的是,DNA纳米结构的稳定性对沉积后清洗程序也很敏感。这些观察结果揭示了SAMs的润湿性与DNA纳米结构的结构稳定性之间复杂的相互作用。出现了一种经验趋势,即疏水性增加与DNA纳米结构更严重的变形相关。据推测,这种变形是由DNA纳米结构内氢键的破坏引起的,并且在干燥过程中因界面张力而加剧。我们的研究还强调了DNA碱基与SAMs之间的π-π堆积相互作用在稳定DNA纳米结构方面的潜在作用。我们的工作扩展了可用于DNA纳米技术应用的底物类型,并强调了全面了解DNA纳米结构与不同表面之间相互作用的必要性。