Suppr超能文献

在表面引发DNA折纸的自组装

Seeding the Self-Assembly of DNA Origamis at Surfaces.

作者信息

Cao Huan H, Abel Gary R, Gu Qufei, Gueorguieva Gloria-Alexandra V, Zhang Yehan, Nanney Warren A, Provencio Eric T, Ye Tao

机构信息

Chemistry and Chemical Biology, University of California, Merced, California 95343, United States.

Materials and Biomaterials Science and Engineering, University of California, Merced, California 95343, United States.

出版信息

ACS Nano. 2020 May 26;14(5):5203-5212. doi: 10.1021/acsnano.9b09348. Epub 2020 Feb 19.

Abstract

Unlike supramolecular self-assembly methods that can organize many distinct components into designer shapes in a homogeneous solution (e.g., DNA origami), only relatively simple, symmetric structures consisting of a few distinct components have been self-assembled at solid surfaces. As the self-assembly process is confined to the surface/interface by mostly nonspecific attractive interactions, an open question is how these interfacial interactions affect multicomponent self-assembly. To gain a mechanistic understanding of the roles of the surface environment in DNA origami self-assembly, here we studied the oligonucleotide-assisted folding of a long single-stranded DNA (ssDNA scaffold) that was end-tethered to a dynamic surface, which could actively regulate the DNA-surface interactions. The results showed that even weak surface attractions can lead to defective structures by inhibiting the merging of multiple domains into complete structures. A combination of surface anchoring and deliberate regulation of DNA-surface interactions allowed us to depart from the existing paradigm of surface confinement via nonspecific interactions and enabled DNA origami folding to proceed in a solution-like environment. Importantly, our strategy retains the key advantages of surface-mediated self-assembly. For example, surface-anchored oligonucleotides could sequence-specifically initiate the growth of DNA origamis of specific sizes and shapes. Our work enables information to be encoded into a surface and expressed into complex DNA surface architectures for potential nanoelectronic and nanophotonic applications. In addition, our approach to surface confinement may facilitate the 2D self-assembly of other molecular components, such as proteins, as maintaining conformational freedom may be a general challenge in the self-assembly of complex structures at surfaces.

摘要

与超分子自组装方法不同,超分子自组装方法可以在均匀溶液中将许多不同的组分组装成设计好的形状(例如DNA折纸术),而在固体表面自组装的仅为由少数不同组分组成的相对简单、对称的结构。由于自组装过程主要通过非特异性吸引相互作用被限制在表面/界面,一个悬而未决的问题是这些界面相互作用如何影响多组分自组装。为了从机理上理解表面环境在DNA折纸术自组装中的作用,我们在此研究了一条末端连接到动态表面的长单链DNA(ssDNA支架)在寡核苷酸辅助下的折叠,该动态表面可以主动调节DNA与表面的相互作用。结果表明,即使是微弱的表面吸引力也会通过抑制多个结构域合并成完整结构而导致结构缺陷。表面锚定和对DNA与表面相互作用的刻意调节相结合,使我们能够摆脱通过非特异性相互作用实现表面限制的现有模式,并使DNA折纸术折叠能够在类似溶液的环境中进行。重要的是,我们的策略保留了表面介导自组装的关键优势。例如,表面锚定的寡核苷酸可以序列特异性地启动特定大小和形状的DNA折纸术的生长。我们的工作使信息能够被编码到表面并表达为复杂的DNA表面结构,用于潜在的纳米电子和纳米光子应用。此外,我们的表面限制方法可能会促进其他分子组分(如蛋白质)的二维自组装,因为在表面复杂结构的自组装中保持构象自由度可能是一个普遍的挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验