Ogger Patricia P, Murray Peter J
Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
Cell Mol Life Sci. 2025 Apr 28;82(1):182. doi: 10.1007/s00018-025-05715-8.
The role of immune metabolism, specific metabolites and cell-intrinsic and -extrinsic metabolic states across the time course of an inflammatory response are emerging knowledge. Targeted and untargeted metabolomic analysis is essential to understand how immune cells adapt their metabolic program throughout an immune response. In addition, metabolomic analysis can aid to identify pathophysiological patterns in inflammatory disease. Here, we discuss new metabolomic findings within the transition from inflammation to resolution, focusing on three key programs of immunity: Efferocytosis, IL-10 signaling and trained immunity. Particularly the tryptophan-derived metabolite kynurenine was identified as essential for efferocytosis and inflammation resolution as well as a potential biomarker in diverse inflammatory conditions. In summary, metabolomic analysis and integration with transcriptomic and proteomic data, high resolution imaging and spatial information is key to unravel metabolic drivers and dependencies during inflammation and progression to tissue-repair.
免疫代谢、特定代谢产物以及在炎症反应的整个时间进程中细胞内在和外在的代谢状态所起的作用正逐渐为人所知。靶向和非靶向代谢组学分析对于理解免疫细胞在整个免疫反应过程中如何调整其代谢程序至关重要。此外,代谢组学分析有助于识别炎症性疾病中的病理生理模式。在此,我们讨论从炎症到炎症消退转变过程中的新代谢组学发现,重点关注免疫的三个关键程序:吞噬作用、白细胞介素-10信号传导和训练免疫。特别是色氨酸衍生的代谢产物犬尿氨酸被确定为吞噬作用和炎症消退所必需的,并且是多种炎症状态下的潜在生物标志物。总之,代谢组学分析以及与转录组学和蛋白质组学数据、高分辨率成像和空间信息的整合是揭示炎症期间以及向组织修复进展过程中代谢驱动因素和依赖性的关键。
Cell Mol Life Sci. 2025-4-28
Int J Mol Sci. 2022-6-4
Metabolites. 2024-11-12
Curr Opin Immunol. 2024-12
Nat Rev Cardiol. 2025-3