Suppr超能文献

主观异步性的不对称监测:一种元认知广义STEARC效应。

Asymmetrical monitoring of subjective asynchronies: a metacognitive generalized STEARC effect.

作者信息

Öztel Tutku, Wiener Martin, Balcı Fuat

机构信息

Department of Psychology, Koç University, Istanbul, Turkey.

Department of Psychology, George Mason University, Fairfax, Virginia, USA.

出版信息

Psychol Res. 2025 Apr 28;89(3):96. doi: 10.1007/s00426-025-02123-2.

Abstract

Previous studies have demonstrated that human participants can keep track of the magnitude and direction of their trial-to-trial errors in temporal, spatial, and numerical estimates, collectively referred to as "metric error monitoring." These studies investigated metric error monitoring in an explicit timing/counting context. However, many of our judgments may also depend on temporal mismatches between stimuli where the temporal information is not processed explicitly, which eventually brings about the simultaneity perception. We investigated whether participants can monitor errors in their simultaneity perception. We tested participants in temporal orer judgment (TOJ) task, where they judged which of the two consecutive stimuli (one on each side of the screen) appeared first and reported their confidence rating for each TOJ. The results of all four experiments showed that the confidence judgements for correct judgments increased and for incorrect judgments decreased with longer absolute SOA. A more granular analysis showed that participants could only monitor their errors for left-first and bottom-first judgments, which suggests a metacognitive spatial-temporal association of response codes (STEARC) effect.

摘要

先前的研究表明,人类参与者能够追踪他们在时间、空间和数字估计中逐次试验误差的大小和方向,这些统称为“度量误差监测”。这些研究在明确的计时/计数情境中调查了度量误差监测。然而,我们的许多判断也可能取决于刺激之间的时间不匹配,其中时间信息并未被明确处理,这最终导致了同时性感知。我们研究了参与者是否能够监测他们在同时性感知中的误差。我们在时间顺序判断(TOJ)任务中对参与者进行了测试,在该任务中,他们判断两个连续刺激(屏幕两侧各一个)中哪个先出现,并报告他们对每个TOJ的置信度评分。所有四个实验的结果表明,随着绝对刺激间隔(SOA)变长,正确判断的置信度判断增加,错误判断的置信度判断降低。更细致的分析表明,参与者只能监测他们在左先和下先判断中的误差,这表明存在反应代码的元认知时空关联(STEARC)效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验