Mori Ryo, Takasan Kazuaki, Ai Ping, Ciocys Samuel, Kawaguchi Kaishu, Kondo Takeshi, Morimoto Takahiro, Lanzara Alessandra
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Department of Physics, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2422667122. doi: 10.1073/pnas.2422667122. Epub 2025 Apr 28.
The transient excitonic condensate is a nonequilibrium electron-hole Bardeen-Cooper-Schrieffer state in a photoexcited semiconductor and semimetal, where electron-hole pairs undergo a phase transition and condense into a single coherent quantum state. Despite numerous experimental works to realize the predicted excitonic condensation phase, experimental evidence still remains elusive. This is largely due to the absence of direct measurements of a material's transient momentum-dependent electronic structure and the excitonic state in the condensation regime. Here, using time and angle-resolved photoemission spectroscopy, we find direct evidence of a transient excitonic condensate in the spin-polarized spatially indirect excitonic topological states in BiTe. Accompanying the formation of the excitonic topological states by photoexcitation, we reveal a splitting of the hole's and electron's quasi-equilibrium chemical potential followed by the band flattening and backbending of the transient topological surface state. Moreover, within the same momentum range, we report a reshaping of the bulk valence band in the form of a Mexican-hat-like Bogoliubov dispersion-hallmarks of the excitonic condensation, followed by the opening of an energy gap at the Fermi level. The fluence and temperature dependence of these renormalization effects are reminiscent of excitonic condensation within Bardeen-Cooper-Schrieffer (BCS)-like behavior. These results, together with theoretical simulation, point to the possible formation of a transient excitonic condensate and provide opportunities to manipulate topologically protected Bose condensates with light.
瞬态激子凝聚是光激发半导体和半金属中的一种非平衡电子 - 空穴巴丁 - 库珀 - 施里弗尔态,其中电子 - 空穴对经历相变并凝聚成单一的相干量子态。尽管有众多实验致力于实现预测的激子凝聚相,但实验证据仍然难以捉摸。这主要是由于缺乏对材料瞬态动量相关电子结构以及凝聚区域中激子态的直接测量。在此,我们利用时间和角分辨光电子能谱,在BiTe的自旋极化空间间接激子拓扑态中发现了瞬态激子凝聚的直接证据。伴随光激发形成激子拓扑态,我们揭示了空穴和电子准平衡化学势的分裂,随后是瞬态拓扑表面态的能带扁平化和回弯。此外,在相同动量范围内,我们报告了体价带以墨西哥帽状博戈留波夫色散的形式重塑——这是激子凝聚的标志,随后在费米能级处打开能隙。这些重整化效应的光通量和温度依赖性让人联想到类似巴丁 - 库珀 - 施里弗尔(BCS)行为的激子凝聚。这些结果与理论模拟一起,指出了可能形成瞬态激子凝聚,并为用光操纵拓扑保护的玻色凝聚提供了机会。