Suppr超能文献

直接观察原子级薄半导体中动量禁戒的暗激子及其动力学。

Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors.

作者信息

Madéo Julien, Man Michael K L, Sahoo Chakradhar, Campbell Marshall, Pareek Vivek, Wong E Laine, Al-Mahboob Abdullah, Chan Nicholas S, Karmakar Arka, Mariserla Bala Murali Krishna, Li Xiaoqin, Heinz Tony F, Cao Ting, Dani Keshav M

机构信息

Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology, Okinawa, Japan 904-0495.

School of Physics, University of Hyderabad, Gachibowli, Hyderabad-500046, Telangana, India.

出版信息

Science. 2020 Dec 4;370(6521):1199-1204. doi: 10.1126/science.aba1029.

Abstract

Resolving momentum degrees of freedom of excitons, which are electron-hole pairs bound by the Coulomb attraction in a photoexcited semiconductor, has remained an elusive goal for decades. In atomically thin semiconductors, such a capability could probe the momentum-forbidden dark excitons, which critically affect proposed opto-electronic technologies but are not directly accessible using optical techniques. Here, we probed the momentum state of excitons in a tungsten diselenide monolayer by photoemitting their constituent electrons and resolving them in time, momentum, and energy. We obtained a direct visual of the momentum-forbidden dark excitons and studied their properties, including their near degeneracy with bright excitons and their formation pathways in the energy-momentum landscape. These dark excitons dominated the excited-state distribution, a surprising finding that highlights their importance in atomically thin semiconductors.

摘要

几十年来,解决激子的动量自由度一直是一个难以实现的目标。激子是光激发半导体中由库仑引力束缚的电子 - 空穴对。在原子级薄的半导体中,这种能力可以探测动量禁戒的暗激子,暗激子对所提出的光电子技术有至关重要的影响,但无法直接用光学技术探测到。在这里,我们通过光发射二硒化钨单层中的组成电子并在时间、动量和能量上对它们进行分辨,来探测激子的动量状态。我们获得了动量禁戒暗激子的直接可视化图像,并研究了它们的性质,包括它们与亮激子的近简并性以及它们在能量 - 动量空间中的形成途径。这些暗激子主导了激发态分布,这一惊人发现凸显了它们在原子级薄半导体中的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验