Hennig Mirko, Bhattacharjee Rumpa B, Agarwal Ishita, Alfaifi Ali, Casillas Jade E, Chavez Sofia, Ishimaru Daniella, Liston David, Mohapatra Sakya, Molla Touhidul, Pathare Suyog, Sidhu Maninder S, Wang Peng, Wang Zechen, Lombana T Noelle, Kharitonov Vladimir G, Couch Jessica A, Lockhart David J, Wustman Brandon A
Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA 94025.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2421915122. doi: 10.1073/pnas.2421915122. Epub 2025 Apr 28.
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder caused by mutations in one of at least 50 different genes that encode proteins involved in the biogenesis, structure, or function of motile cilia. Genetically inherited defects in motile cilia cause PCD, a debilitating respiratory disease for which there is no approved therapy. The dynein axonemal intermediate chain 1 (DNAI1) protein is a key structural element of the ciliary outer dynein arm (ODA) critical for normal ciliary activity and subsequent clearance of mucus from the conducting airways in humans. Loss-of-function mutations in DNAI1 account for up to 10% of all PCD cases, with functional abnormalities in patients presenting at or near birth and leading to a life-long course of disability, including progressive loss of lung function and bronchiectasis by adulthood. This underscores the significant unmet need for disease-modifying treatments that restore ciliary activity and mucociliary clearance in PCD patients. In this work, we demonstrate that lipid nanoparticle (LNP)-formulated human mRNA can be delivered as an aerosol to primary human bronchial epithelial cell models and to nonhuman primate (NHP) lungs. Additionally, we show that delivery of aerosolized LNP- mRNA to NHPs leads to detectable levels of newly translated human DNAI1 protein, at doses that overlap with exposures in an in vitro cell-based PCD model enabling rescue of ciliary function. Therefore, these data support further development of the inhaled mRNA therapy in clinical studies as a potential disease-modifying treatment for PCD.
原发性纤毛运动障碍(PCD)是一种常染色体隐性疾病,由至少50种不同基因中的一种发生突变引起,这些基因编码参与运动性纤毛生物发生、结构或功能的蛋白质。运动性纤毛的遗传缺陷导致PCD,这是一种使人衰弱的呼吸系统疾病,目前尚无获批的治疗方法。动力蛋白轴丝中间链1(DNAI1)蛋白是纤毛外动力蛋白臂(ODA)的关键结构元件,对人类正常的纤毛活动以及随后从传导气道清除黏液至关重要。DNAI1功能丧失突变占所有PCD病例的10%,患者在出生时或出生前后出现功能异常,并导致终身残疾,包括成年后肺功能逐渐丧失和支气管扩张。这突出了对改善疾病治疗的迫切需求,这种治疗能恢复PCD患者的纤毛活动和黏液纤毛清除功能。在这项研究中,我们证明脂质纳米颗粒(LNP)包裹的人mRNA可以通过气溶胶形式递送至原代人支气管上皮细胞模型和非人类灵长类动物(NHP)肺部。此外,我们表明,将雾化的LNP-mRNA递送至NHP会导致可检测到的新翻译的人DNAI1蛋白水平,其剂量与基于细胞的体外PCD模型中的暴露剂量重叠,从而能够挽救纤毛功能。因此,这些数据支持在临床研究中进一步开发吸入式mRNA疗法,作为PCD的一种潜在疾病改善治疗方法。