Dougherty Gerard W, Loges Niki T, Klinkenbusch Judith A, Olbrich Heike, Pennekamp Petra, Menchen Tabea, Raidt Johanna, Wallmeier Julia, Werner Claudius, Westermann Cordula, Ruckert Christian, Mirra Virginia, Hjeij Rim, Memari Yasin, Durbin Richard, Kolb-Kokocinski Anja, Praveen Kavita, Kashef Mohammad A, Kashef Sara, Eghtedari Fardin, Häffner Karsten, Valmari Pekka, Baktai György, Aviram Micha, Bentur Lea, Amirav Israel, Davis Erica E, Katsanis Nicholas, Brueckner Martina, Shaposhnykov Artem, Pigino Gaia, Dworniczak Bernd, Omran Heymut
1 Department of General Pediatrics and.
2 Gerhard-Domagk-Institut for Pathology, University Hospital Muenster, and.
Am J Respir Cell Mol Biol. 2016 Aug;55(2):213-24. doi: 10.1165/rcmb.2015-0353OC.
Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.
原发性纤毛运动障碍(PCD)是一种隐性遗传性疾病,由于黏液纤毛清除功能受损,导致慢性呼吸系统疾病。传统的透射电子显微镜(TEM)是识别呼吸道纤毛超微结构缺陷的诊断标准,但在约30%的PCD病例中并不适用,这些病例的纤毛超微结构正常。DNAH11突变是PCD伴纤毛超微结构正常和纤毛摆动亢进的常见原因,但其病理生理学仍知之甚少。因此,我们在PCD背景下,通过免疫荧光显微镜(IFM)对人呼吸道纤毛中的DNAH11进行了表征。我们使用全外显子组和靶向新一代测序以及桑格测序来鉴定和确认8种新的功能丧失性DNAH11突变。我们设计并验证了一种对DNAH11特异的单克隆抗体,并对对照和受PCD影响的人呼吸道细胞以及来自绿色荧光蛋白(GFP)左右动力蛋白小鼠的样本进行了高分辨率IFM,以确定DNAH11的纤毛定位。IFM分析表明,天然DNAH11仅定位在野生型人呼吸道纤毛的近端区域,而在具有某些功能丧失性DNAH11突变的PCD个体中DNAH11缺失。GFP左右动力蛋白小鼠证实了DNAH11在气管纤毛中的近端定位。DNAH11在具有不同超微结构缺陷(如缺乏外动力蛋白臂(ODA))的PCD个体的呼吸道纤毛中仍保持近端定位。TEM断层扫描检测到DNAH11缺陷纤毛中ODA部分减少。DNAH11突变仅导致呼吸道纤毛近端区域出现细微的ODA缺陷,这可通过IFM和TEM断层扫描检测到。