Wang Siqi, Bai Shulin, Chen Pengpeng, Zhan Shaoping, Tian Yu, Wang Lei, Liu Dongrui, Peng Jiayi, Li Yichen, Gao Dezheng, Gao Tian, Zhang Zhiyao, Si Zhan, Wei Yuxiang, Xie Hongyao, Gao Xiang, Zhu Yingcai, Wen Yi, Zhao Li-Dong
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
Tianmushan Laboratory, Beihang University, Hangzhou 311115, China.
J Am Chem Soc. 2025 May 7;147(18):15827-15837. doi: 10.1021/jacs.5c03732. Epub 2025 Apr 28.
The scarcity of tellurium (Te) poses significant challenges to the widespread application of BiTe-based thermoelectric systems. In this work, we investigated the potential of Te-free PbSe for thermoelectric applications by optimizing carrier mobility through crystal growth and a two-step strategy of light alloying and doping. First, Cd alloying was employed to reduce the lattice thermal conductivity () of n-type PbSe through the off-center effect while preserving carrier mobility. Subsequent In doping enhanced the effective mass via the resonant level formation, achieving a high weighted mobility-to- ratio (/∼338.4) and a large power factor of 36.7 μW cm K at 300 K in the PbSe-0.008Cd-0.0008In crystal. Due to the reduced lattice thermal conductivity and largely promoted / value, the optimized PbSe-0.008Cd-0.0008In crystal exhibited a large value of ∼0.5 at 300 K, a maximum value of ∼1.3 at 673 K, and an average value of ∼1.1 (300-773 K). Additionally, a thermoelectric generator based on the PbSe-0.008Cd-0.0008In crystal achieves a power generation efficiency of 6.3%, while a 7-pair module (n-type PbSe-0.008Cd-0.0008In crystal and p-type commercial BiSbTe material) demonstrated a maximum cooling temperature difference (Δ) of 51.2 K ( = 353 K). This work establishes PbSe as a cost-effective, high-performance thermoelectric material for thermoelectric cooling and power generation.
碲(Te)的稀缺性给基于BiTe的热电系统的广泛应用带来了重大挑战。在这项工作中,我们通过晶体生长以及轻合金化和掺杂的两步策略来优化载流子迁移率,研究了无碲PbSe在热电应用中的潜力。首先,采用Cd合金化通过偏心效应降低n型PbSe的晶格热导率(),同时保持载流子迁移率。随后的In掺杂通过共振能级的形成提高了有效质量,在PbSe-0.008Cd-0.0008In晶体中,在300 K时实现了高加权迁移率与比(/∼338.4)以及36.7 μW cm K的大功率因子。由于晶格热导率降低以及/值大幅提高,优化后的PbSe-0.008Cd-0.0008In晶体在300 K时表现出约0.5的大值,在673 K时最大值约为1.3,在300 - 773 K范围内平均值约为1.1。此外,基于PbSe-0.008Cd-0.0008In晶体的热电发电机实现了6.3%的发电效率,而一个7对模块(n型PbSe-0.008Cd-0.0008In晶体和p型商用BiSbTe材料)展示了51.2 K(= 353 K)的最大冷却温差(Δ)。这项工作确立了PbSe作为一种用于热电冷却和发电的经济高效、高性能热电材料。