Rehman Amjad, Mahmood Tariq, Alahmadi Tahani Jaser, Almasoud Ahmed S, Saba Tanzila
Artificial Intelligence and Data Analytics (AIDA) Lab, CCIS, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
Faculty of Information Sciences, University of Education, Vehari Campus, 61161, Vehari, Pakistan.
Sci Rep. 2025 Apr 28;15(1):14827. doi: 10.1038/s41598-025-93937-y.
Wireless Sensor Networks (WSNs) are distributed sensor nodes that sense data from their surroundings and relay it to a central network for processing and analysis. Sensor localization is a crucial technique in WSNs, enabling precise positions of target nodes based on environmental signal perception. However, achieving high accuracy in node localization remains a challenge. This study introduces an improved DV-Hop positioning algorithm that integrates Long Short-Term Memory (OLSTM-DVHop) networks to enhance node position predictions. The algorithm processes original data through filtering, analysis, and feature extraction to improve predicted node positions. The study analyzed errors using a standard DV-Hop algorithm and designed a robust architecture for WSN positioning. Simulation experiments validated the proposed improvements, aligning with the algorithm's accuracy requirements. The proposed error correction mechanism addresses uneven error distribution in the DV-Hop algorithm, adjusting the positions of nodes with significant deviations, reducing errors, and enhancing the positioning process's reliability and accuracy. The effectiveness of the proposed algorithm is evaluated by comparing it with other localization algorithms across different terrain types. The improved DV-Hop algorithm significantly reduces localization errors and offers superior accuracy, outperforming other algorithms in various experimental scenarios.
无线传感器网络(WSNs)是分布式传感器节点,可感知周围环境的数据并将其转发到中央网络进行处理和分析。传感器定位是无线传感器网络中的一项关键技术,可基于环境信号感知确定目标节点的精确位置。然而,在节点定位中实现高精度仍然是一项挑战。本研究介绍了一种改进的DV-Hop定位算法,该算法集成了长短期记忆(OLSTM-DVHop)网络以增强节点位置预测。该算法通过滤波、分析和特征提取来处理原始数据,以改善预测的节点位置。该研究使用标准DV-Hop算法分析误差,并设计了一种用于无线传感器网络定位的稳健架构。仿真实验验证了所提出的改进,符合算法的精度要求。所提出的误差校正机制解决了DV-Hop算法中误差分布不均匀的问题,调整偏差较大的节点位置,减少误差,并提高定位过程的可靠性和准确性。通过将该算法与不同地形类型下的其他定位算法进行比较,评估了所提算法的有效性。改进后的DV-Hop算法显著降低了定位误差,并具有更高的精度,在各种实验场景中均优于其他算法。