Suppr超能文献

基于机器学习的大曼谷地区排放物与气象因素对细颗粒物影响的量化与分离

Machine learning-based quantification and separation of emissions and meteorological effects on PM in Greater Bangkok.

作者信息

Aman Nishit, Panyametheekul Sirima, Pawarmart Ittipol, Xian Di, Gao Ling, Tian Lin, Manomaiphiboon Kasemsan, Wang Yangjun

机构信息

Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Energy Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

出版信息

Sci Rep. 2025 Apr 28;15(1):14775. doi: 10.1038/s41598-025-99094-6.

Abstract

This study presents the first-ever application of machine learning (ML)-based meteorological normalization and Shapley additive explanations (SHAP) analysis to quantify, separate, and understand the effect of meteorology on PM over Greater Bangkok (GBK). Six ML models namely random forest (RF), adaptive boosting (ADB), gradient boosting (GB), extreme gradient boosting (XGB), light gradient boosting machine (LGBM), and cat boosting (CB) were used with meteorological factors, fire activity, land use, and socio-economic data as predictor variables. The LGBM outperformed other models achieving ρ = 0.9 (0.95), MBE = 0 (- 0.01), MAE = 5.5 (3.3) μg m, and RMSE = 8.7 (4.9) μg m for hourly (daily) PM prediction. LGBM was used for spatiotemporal PM estimation, and meteorological normalization was applied to calculate PM (emission-related PM) and PM (meteorology-related PM). Diurnal variation reveals higher PM levels in the morning (08-10 LT) due to increased traffic emissions and thermal inversion and a decrease in PM as the day progresses due to decreased emission and inversion dissipation. Monthly variation suggests higher PM in winter (December and January) due to emissions and stagnant meteorological conditions. Negative PM during November, March, and April values show meteorology improves air quality, while positive values from December to February indicate stagnant winter conditions worsen it. During winter, PM and PM showed an increasing trend in 15.6% and 67.8% of the area while decreasing trends fell from 23.2 to 1.9%. In summer, the percentage of areas with an increasing trend rose from 18.7 to 34.6%, and decreasing areas fell from 12.6 to 6.5%. Increase in PM despite decreasing emission over a larger area, indicating limited effectiveness of mitigation measures. Winter exhibits greater PM variability due to episodic increases from changing meteorological conditions. In Bangkok and nearby areas, higher variability is mainly driven by meteorology, with more consistent emissions in Bangkok compared to rural areas affected by agricultural burning. PM and PM showed stronger persistence in winter than in summer, with weaker effects in Bangkok. Hurst exponent averages were 0.75, 0.76, and 0.72 for PM and 0.79, 0.8, and 0.73 for PM in dry, winter, and summer seasons, respectively. SHAP analysis suggested relative humidity, planetary boundary layer height, v wind, temperature, u wind, global radiation, and aerosol optical depth as the key variables affecting PM with mean absolute SHAP values of 5.29, 4.79, 4.29, 3.68, 2.37, 2.22, and 2.03, respectively. Based on these findings, some policy recommendations have been proposed.

摘要

本研究首次应用基于机器学习(ML)的气象归一化和夏普利加法解释(SHAP)分析,以量化、区分并理解气象因素对大曼谷地区(GBK)细颗粒物(PM)的影响。使用了六种机器学习模型,即随机森林(RF)、自适应提升(ADB)、梯度提升(GB)、极端梯度提升(XGB)、轻梯度提升机(LGBM)和猫科动物提升(CB),将气象因素、火灾活动、土地利用和社会经济数据作为预测变量。LGBM在其他模型中表现最佳,每小时(每日)PM预测的相关系数ρ = 0.9(0.95),平均偏差误差MBE = 0(-0.01),平均绝对误差MAE = 5.5(3.3)μg/m³,均方根误差RMSE = 8.7(4.9)μg/m³。LGBM用于时空PM估计,并应用气象归一化来计算PM(与排放相关的PM)和PM(与气象相关的PM)。日变化显示,由于交通排放增加和逆温,早晨(当地时间08 - 10时)的PM水平较高,随着白天的推进,由于排放减少和逆温消散,PM水平下降。月变化表明,由于排放和气象条件停滞,冬季(12月和1月)的PM较高。11月、3月和4月的负PM值表明气象条件改善了空气质量,而12月至2月的正值表明冬季停滞条件使其恶化。冬季,15.6%和67.8%的区域PM和PM呈上升趋势,而下降趋势的区域从23.2%降至1.9%。夏季,上升趋势区域的百分比从18.7%升至34.6%,下降区域从12.6%降至6.5%。尽管在更大区域排放量减少,但PM仍增加,表明减排措施效果有限。由于气象条件变化导致的偶发性增加,冬季的PM变异性更大。在曼谷及其周边地区,较高的变异性主要由气象因素驱动,与受农业焚烧影响的农村地区相比,曼谷的排放更为稳定。PM和PM在冬季的持续性强于夏季,在曼谷的影响较弱。在干燥、冬季和夏季,PM的赫斯特指数平均值分别为0.75、0.76和0.72,PM的赫斯特指数平均值分别为0.79、0.8和0.73。SHAP分析表明,相对湿度、行星边界层高度、v风、温度、u风、全球辐射和气溶胶光学深度是影响PM的关键变量,平均绝对SHAP值分别为5.29、4.79、4.29、3.68、2.37、2.22和2.03。基于这些发现,提出了一些政策建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd3a/12038008/b4dfed0a97fc/41598_2025_99094_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验