Suppr超能文献

利用机器学习和基于博弈论的方法估算影响曼谷机场能见度及其变化的因素。

Estimating visibility and understanding factors influencing its variations at Bangkok airport using machine learning and a game theory-based approach.

作者信息

Aman Nishit, Panyametheekul Sirima, Sudhibrabha Sumridh, Pawarmart Ittipol, Xian Di, Gao Ling, Tian Lin, Manomaiphiboon Kasemsan, Wang Yangjun

机构信息

Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

Center for Clean Air Solutions Master Plan, Environmental Engineering Association of Thailand, Bangkok, Thailand.

出版信息

Environ Sci Pollut Res Int. 2024 Aug 5. doi: 10.1007/s11356-024-34548-4.

Abstract

In this study, six individual machine learning (ML) models and a stacked ensemble model (SEM) were used for daytime visibility estimation at Bangkok airport during the dry season (November-April) for 2017-2022. The individual ML models are random forest, adaptive boosting, gradient boosting, extreme gradient boosting, light gradient boosting machine, and cat boosting. The SEM was developed by the combination of outputs from the individual models. Furthermore, the impact of factors affecting visibility was examined using the Shapley Additive exPlanation (SHAP) method, an interpretable ML technique inspired by the game theory-based approach. The predictor variables include different air pollutants, meteorological variables, and time-related variables. The light gradient boosting machine model is identified as the most effective individual ML model. On an hourly time scale, it showed the best performance across three out of four metrics with the ρ = 0.86, MB = 0, ME = 0.48 km (second lowest), and RMSE = 0.8 km. On a daily time scale, the model performed the best for all evaluation metrics with ρ = 0.92, MB = 0.0 km, ME = 0.3 km, and RMSE = 0.43 km. The SEM outperformed all the individual models across three out of four metrics on an hourly time scale with ρ = 0.88, MB = 0.0 km, (second lowest), and RMSE = 0.75 km. On the daily scale, it performed the best with ρ = 0.93, MB = 0.02 km, ME = 0.27 km, and RMSE = 0.4 km. The seasonal average original (VIS) and meteorologically normalized visibility (VIS) decrease from 2017 to 2021 but increase in 2022. The rate of decrease in VIS is double than rate of decrease in VIS which suggests the effect of meteorology visibility degradation. The SHAP analysis identified relative humidity (RH), PM, PM, day of the season year (i.e., Julian day) (JD), and O as the most important variables affecting visibility. At low RH, visibility is not sensitive to changes in RH. However, beyond a threshold, a negative correlation between RH and visibility is found potentially due to the hygroscopic growth of aerosols. The dependence of the Shapley values of PM and PM on RH and the change in average visibilities under different RH intervals also suggest the effect of hygroscopic growth of aerosol on visibility. A negative relationship has been identified between visibility and both PM and PM. Visibility is positively correlated with O at lower to moderate concentrations, with diminishing impact at very high concentrations. The JD is strongly negatively related to visibility during winter while weakly associated positively later in summer. Findings from this research suggest the feasibility of employing machine learning techniques for predicting visibility and understanding the factors influencing its fluctuations.

摘要

在本研究中,使用了六种独立的机器学习(ML)模型和一个堆叠集成模型(SEM),对2017 - 2022年旱季(11月至4月)曼谷机场的白天能见度进行估计。独立的ML模型有随机森林、自适应提升、梯度提升、极端梯度提升、轻梯度提升机和猫鼬提升。SEM是通过组合各个模型的输出而开发的。此外,使用Shapley值相加解释(SHAP)方法研究了影响能见度的因素的影响,SHAP是一种受基于博弈论方法启发的可解释ML技术。预测变量包括不同的空气污染物、气象变量和与时间相关的变量。轻梯度提升机模型被确定为最有效的独立ML模型。在小时时间尺度上,它在四个指标中的三个指标上表现最佳,ρ = 0.86,MB = 0,ME = 0.48千米(第二低),RMSE = 0.8千米。在每日时间尺度上,该模型在所有评估指标上表现最佳,ρ = 0.92,MB = 0.0千米,ME = 0.3千米,RMSE = 0.43千米。SEM在小时时间尺度上的四个指标中的三个指标上优于所有独立模型,ρ = 0.88,MB = 0.0千米(第二低),RMSE = 0.75千米。在每日尺度上,它表现最佳,ρ = 0.93,MB = 0.02千米,ME = 0.27千米,RMSE = 0.4千米。2017年至2021年期间,季节性平均原始能见度(VIS)和气象归一化能见度(VIS)下降,但在2022年有所增加。VIS的下降速率是VIS下降速率的两倍,这表明气象对能见度下降的影响。SHAP分析确定相对湿度(RH)、PM、PM、季节年的日期(即儒略日)(JD)和O是影响能见度的最重要变量。在低RH时,能见度对RH的变化不敏感。然而,超过一个阈值后,发现RH与能见度之间存在负相关,这可能是由于气溶胶的吸湿增长。PM和PM的Shapley值对RH的依赖性以及不同RH区间下平均能见度的变化也表明气溶胶的吸湿增长对能见度的影响。已确定能见度与PM和PM均呈负相关。在较低至中等浓度下,能见度与O呈正相关,在非常高的浓度下影响减弱。冬季JD与能见度强烈负相关,而在夏季后期则呈弱正相关。本研究的结果表明,采用机器学习技术预测能见度并理解影响其波动的因素是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验